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Abstract

This thesis investigates emotion recognition in Swedish speech through a multimodal approach
using Al models. Combining speech-based and text-based analysis with self-assessed emo-
tion scores from participants in semi-structured interviews, this study addresses three research
questions: (1) How does Al-model for speech emotion recognition compare to research on vocal
markers for emotions in Swedish speech?; (2) What similarities and differences emerge between
emotions detected from audio features and from the textual transcripts of the same speech
data?; (3) How do Al-generated emotion labels (speech & text-based) compare to self-reported
emotions? To answer these questions, data was collected in form of spontaneous speech from
interviews, resulting in a more naturalistic dataset than acted datasets which are largely used
in research. The results from analysing the collected data revealed partial alignments between
vocal features and the speech-based AI model, Hume Al, as well as strongly suggesting some
emotions are more difficult to detect due. The text-based AI model, NLP Cloud, proved to
better align with the self-assessed scores, indicating that the textual context gave important
cues more consistently than vocal features alone. The results highlighted the importance of a
multimodal approach to capture a wider range of emotional expressions. Contributing to the
fields of affective computing and natural language processing particularly by using spontaneous
speech over an acted dataset, this study gives a deeper understanding in emotion recognition
applied to the Swedish language.

Keywords 2 Emotion recognition, text-based emotion detection (TBED), speech-based
emotion recognition (SER), vocal markers, Swedish speech, self-assessed emotion scores, Al-
based emotion detection
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Introduction

This thesis aims to explore emotion recognition and its effectiveness in the Swedish language.
With the rapid advancement of the technology industry and artificial intelligence, emotion
recognition has started to play an increasingly important role in the enhancement of human-
computer interactions. These areas hold potential to transform and develop several important
fields, but there are still challenges in the field. Much of the research has been focused on specific
languages, notably English. This research focuses on emotion recognition across two distinct
modalities in Swedish, speech-based emotion recognition and text-based emotion recognition
and aim to contribute to broadening the field of emotion recognition in a non-English language.

1.1 Background

According to Oatley et al. (2019), emotion recognition has attracted increasing attention
with the rapid advancement of technology and artificial intelligence. Emotions are experienced
by all humans but are difficult to define precisely. They are an internal experience that are
foundational to our sense of identity, our relationships, and moral judgement. Scientists have
faced challenges in the effort to characterize how emotions are communicated. Emotions are
internal but also expressed externally through voice and movements of the body. They are not
only communicated through the words we say, but also how we express them. Intonation is
a source of varied emotional expressions where its states may alter patterns in vocalizations.
It is considered that various emotion-related physiological changes influence acoustic features
such as pitch, tempo, pitch variability, and loudness in the speech autociteOatley2019. Beyond
spoken signals, researchers have also developed a set of Natural Language Processing (NLP)
techniques to interfer emotional states and opinions directly from text, based on methods
at the intersection of artificial intelligence, computer science, and linguistics (Kansara et al.,
2020). With the development of Artificial Intelligence several techniques have accelerated in
the recent years, including for NLP, even if its origins back to the 1950s when questions about
whether a machine could learn and think to interact with humans raised. (Nufiez et al., 2024).
NLP has remained as a significant contributor of Al. Some of the active research areas in the
NLP domain is Machine Translation, Chatbots, recognizing speech, text summarization, and
sentiment analysis (S. Kusal et al., 2023). Figure [L.1] demonstrates the different subdomains of
NLP.
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Figure 1.1: Subdomains of NLP (S. Kusal et al., 2023).

Sentiment analysis is a computational branch in NLP that utilizes the detection and evalu-
ation of people’s emotions, opinions, and moods based on text, speech, facial expression, etc.,
without analysis of these feelings (Ermakova et al., 2023). The rise of sentiment analysis is
associated with the growth of social media, which has generated vast amounts of digital option
data recorded in digital forms. Since the early 2000’s, the field has become one of the most
researched parts in NLP (L. Zhang et al., 2018), expanding beyond computer science to fields
like finance, marketing, political- and health science. Accordingly, sentiment analysis is valu-
able across different areas of society. Sentiment analysis is utilized in the popular index called
the happy planet index (HappyPlanetIndex, n.d|), measuring sustainable well-being of different
countries, even if it only can observe three feelings, positive, negative, or neutral. The happy
planet index checks the happiness level calculated from a particular country, where emotion
detection is used with sentiment analysis (Madhuri & Lakshmi, 2021). With the evolution of
deep learning networks, emotion detection has advanced (Safari & Chalechale, 2023). Senti-
ment analysis identifying positive, negative, or neutral states have progressed into recognizing
the six basic emotions; joy, sadness, anger, disgust, fear, and surprise in text. The emotions
categorization fluctuate depending on the research. These basic six categories were determined
by Paul Ekman (S. Kusal et al., 2023; Oatley et al., 2019) who determined that these six
fundamental emotions is shared in people of different cultures, characterized by facial features.
However, Ekman’s classification was made over 20 years ago when there was no agreement
about which emotions should be considered as existed. Today, the agreement about evidence
for universal emotional signals and evidence for five emotions is robust: anger, disgust, sadness,
happiness, and fear (Ekman, 2016).

Emotion recognition from textual data is important in various domains such as customer
reviews, social media analysis, public monitoring, and conversational agents. A systematic
review (S. Kusal et al., 2023) shows that Deep Learning models outperform traditional Ma-~
chine Learning models due to their ability to capture contextual dependencies. The review
further demonstrates the highest accuracy (76%) is shown by transformer-based models such
as bidirectional encoder representations from transformers (BERT), highlights challenges such
as small or imbalanced datasets that can affect the model reliability, and notes that multimodal
approaches with text, speech, and images improve emotion recognition (Madhuri & Lakshmi,
2021). However, text-based emotion detection (TBED) has challenges with identifying hid-
den emotions, and adapting to diverse languages. Datasets based on different languages than
English, as Arabic and Hindi, are tested in a study (Maruf et al., 2024) that identifies chal-
lenges as limited resources for non-English languages. The authors underscore the potential of
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TBED but notes limitations as it is no universal solution for challenges like sarcasm, dynamic
emotions, and cultural variances.

Emotion detection research progressed with Speech Emotion Recognition (SER) (S. Kusal
et al., 2023). It has shown that hearers can evaluate five emotions in speech-prosody, anger,
happiness, sadness, fear, and tenderness, with 70 percent accuracy (Oatley et al., 2019). Speech
emotion recognition focuses on how something is said rather than the words themselves. Acous-
tic features like amplitude, formants, and pitch help classify emotions. Those features offer
invaluable insights into the subtle emotional expressions conveyed through speech, assisting
the complicated process of emotion recognition (Lian et al., 2023). Several studies distinguish
different emotions through vocal features. Already in 2005, automatic recognition of positive
and negative emotions in spoken dialogs was investigated (C. M. Lee & Narayanan, 2005).
In that study, acoustic, lexical, and discourse information were combined to enhance emotion
detection and move beyond traditional acoustic-only ways. The authors analysed acoustic fea-
tures, lexical features, and discourse features. Linear Discriminant Classifiers were used and
resulted in good performance for acoustic and lexical information. A study by Bénziger et al.
(2014) demonstrated that human listeners could reliably rate emotional expressions in acted
voices. These human judgements had higher accuracy for detection of certain emotions, such as
happiness, compared to technical analyses of acoustic measurements. According go Khalil et al.
(2019), acoustic features enable emotion recognition through speech using deep learning, which
offers many advantages over traditional sentiment-analysis methods. Deep learning models has
the capability to automatically detect complex patterns and varying features without requiring
manual feature extraction. The goal of speech emotion recognition (SER) is identification of
emotions in speech, unrelated to the semantic content (S. D. Kusal et al., 2024). Figure
represents a SER system.
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Figure 1.2: Block diagram of SER (Tyagi € Széndsi, |2024).

In recent years, speech emotion recognition has emerged as a research area driven by its
applications in human-computer interaction (S. Zhang et al., 2021). The advancements has
led to the development of intelligent affective services in fields such as call centres, healthcare,
surveillance, and affective computing. The accuracy of models tested in recent years have
improved significantly (Adebiyi et al., 2024; Praseetha & Joby, 2022; Rahman et al., 2024).
Several studies conducted in the last year’s show emotion detection accuracy results over 90%.
Juslin et al. (2018) concluded a study in 2018 analysing 1,877 voice clips from 23 datasets to
compare spontaneous and posed emotions. Their findings highlighted key differences:



« Spontaneous expressions were rated as more genuine than posed ones, even when intensity
was controlled.

o Posed expressions were more intense, but intensity alone did not fully explain perceived
authenticity.

o Acoustic differences were small but present, mainly in pitch range, speech rate, and voice
intensity.

o Highly intense spontaneous emotions conveyed emotions as clearly as posed ones, sug-
gesting that emotion intensity plays a role in perception.

These findings underscore that posed and spontaneous emotions are not interchangeable and
that SER datasets must distinguish between these sample types to build models that can
generalize to real-world emotional speech accurately. One recent review of SER corpora and
features (Rathi & Tripathy, 2024) shows that most studies still target only six emotions—
happiness, anger, sadness, surprise, fear, and neutrality—even though narrower sets (e.g. anger,
fear, happiness, sadness) dominate earlier work (K. R. Scherer et al., 2018). In contrast,
GoEmotions is a large, detailed text database for 27 distinct emotions, a study by Demszky
et al. (2020) obtained an average F of 0.46 (0.86 for gratitude, 0.00 for grief) and 0.64 when
reduced to six labels. While this GoEmotions-study is included in the research behind the
commercial system Hume.ai, and highlights the value of fine-grained emotion categories (Hume,
n.d.-a), which is important to acknowledge since because of potential biases.

Datasets drive both speech- and text-based emotion models. Speech emotion recognition
datasets are gathered in three ways, acted by performers, induced in controlled settings, or
from natural conversations, affecting how expressive and realistic the recordings are. Rathi and
Tripathy (2024) analysed 93 research papers where IEMOCAP and RAVDESS are among the
most widely used datasets, chosen by 35.83% and 21.50% of researchers, respectively. They
further state that dataset choice, recording conditions, and selected features (e.g. MFCCs,
pitch, intensity, prosody) impact SER accuracy significantly, and that natural speech is more
difficult to classify due to its high variability and background noise. The number of natural
datasets is relatively limited (Cai et al., 2023), and many research papers test on acted datasets.
For example, the empirical analysis Ahammed et al. (2024) demonstrates a high-accuracy SER
system (100% accuracy, precision, and F1-score) on a combined RAVDESS, TESS, and SAVEE
dataset. Each dataset includes posed or elicited emotions in English speech. Similarly, different
models for SER achived over 94% accuracy for these same acted datasets (Alroobaea, 2024).
However, spontaneos speech is not validated in these studies and depends on acted data. In
contrast, Text-Based Emotion Detection (TBED) are driven by diverse text datasets, from six
emotions to GoEmotions set with 27 emotions (S. Kusal et al., 2023). Researchers in TBED
can use publicly available datasets with reliable annonating, for instanse derieved from stories,
publications, news, social media texts, or reviews on movies. According to S. Kusal et al.
(2023), many datasets are based on social media, including casual writing style which is a
big challenge. The use of short messages and informal language has limited research. Human
emotion expressions and the texts conveying them are ambiguous and subjective, additionally,
emotions are multifaceted with varying expressions. Therefore, the authors claim that human
mapping is important. Over 3.5 milliom self-labeled posts on Twitter was used to train a model
in S. J. Lee et al. (2023) , achieving up to 0.87 F1 on human-annonated sets and 0.79 F1 on
self-reported hashtags. However, like SER, TBED is dominated by English and lacks large,
natrualistic datasets in other languages.

The promising development of emotion recognition has been adapted in research for other
areas than computer and machine learning science. SER is beneficial in translating languages,



interactive courses and tutorials held online where the student’s emotional state can be un-
derstood to help the machine make decisions on how to present the course (Abbaschian et al.,
2021)). It can be implemented in vehicles’ safety structures to recognize the driver’s emotional
state and therefore prevent accidents. Several studies (DeSouza et al., 2021; Drougkas et al.,
2024; Simcock et al., 2020; Singh, 2023) demonstrate the potential benefit of Al-based emotion
recognition in mental health, investigating it can assist psychiatrics diagnosing and identify-
ing potential mental illnesses. DeSouza et al. (2021) showed how leveraging speech and text
analysis with NLP can help detect late-life depression and predict its severity with 86-92%
accuracy. Drougkas et al. (2024) compared unimodal approaches, either text- or audio-based
and combined audio-text models, resulting in text unimodal accuracy between 78% and 87%
with F1 scores from 0.60 to 0.79, audio unimodal accuracy of 64%-72% with F1 values as low
as 0.0 up to 0.46. Multimodal approaches, combining text and audio, showed similar accuracy
(80% - 87%) and F1 scores (0.60-0.80) as text-unimodal approaches. The authors conclude
that text model outperform the acoustic model in recognising mental health indicators, but
that multimodal models can outperform unimodal techniques since positive F1 scores increase
combining the models.

In summery, speech emotion recognition is proficient in capturing vocal cues, especially on
acted datasets, while text-based emotion detection relies on transformer models trained on large
text collections. However, most research is based on English and uses acted or social-media
data, with few studies exploring natural, spontaneous speech or on other languages.

1.2 Problem Description

Despite significant progress in speech emotion recognition, there are limitations in current re-
search. For instance, emotional voice samples are usually obtained from actors portraying
emotions using scripted speech. These acted expressions tend to be more intense and exagger-
ated than naturally occurring emotions. However, this method risks overemphasizing obvious
emotional cues while missing subtle ones. It is argued that such portrayals reflect social norms
more than genuine physiological responses, although all public expressions may involve some
degree of performance (K. R. Scherer et al., 2018). The way emotional speech data is col-
lected depends on the design and purpose of the SER system. As datasets shift from acted
emotions to more spontaneous or real-life emotions, emotion recognition becomes more chal-
lenging. Many researchers prefer acted emotion datasets because they offer a wide range of
emotions and large amounts of data (Rathi & Tripathy, 2024). Induced datasets are collected
by constructing an artificial emotional situation, without the knowledge of the performer or
speaker. This results in a more naturalistic database, but issues regarding ethics may apply,
since the speaker should know they have been recorded for research (Khalil et al., 2019). Es-
timation of emotions from spontaneous speech is a challenging task. Most studies test models
on acted datasets (Ahammed et al., 2024; Alroobaea, 2024; Khalil et al., 2019; Praseetha &
Joby, 2022). The primary reason for the concentration on acted SER tasks is that acted emo-
tions can be easily performed in a controlled laboratory setting, often resulting in high SER
accuracy. However, these emotions tend to be exaggerated and may not accurately reflect how
emotions are expressed in real-world situations. Consequently, detecting spontaneous emotions
in natural environments is significantly more complex and challenging compared to recognizing
acted emotions (S. Zhang et al., 2021)). Figure demonstrates the difficulty level for varying
settings.
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Figure 1.3: Emotion recognition databases and their difficulty level (Khalil et al., |2019).

Text-Based Emotion Detection (TBED) shows similar gaps regarding the data the majority
of the researched models are trained and evaluated on. Although transformer models reach
up to 76 % accuracy on English datasets (S. Kusal et al., 2023), they are heavily dependent
on informal social-media or review texts. Moreover, TBED resources for other languages is
limited, and challenges like sarcasm and cultural nuance affects the reliability of the models
(S. J. Lee et al., 2023; Maruf et al., 2024).

The Swedish language is not widely spoken and therefore very limited research has been
concluded on the Swedish speech. One study (Ekberg et al., 2023) investigated Swedish emotion
recognition through feature extraction and concluded that emotions in Swedish speech have
unique sound patterns. Limitations as overreliance on acted English data, lack of natrual and
non-English datasets, and modality-specific biases, are motivations for this thesis. We will
compare SER and TBED in Swedish, using both speech and text from the same speakers and
explore the alignment against their self-reported emotions to test real-world performance.
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1.3 Purpose and Research Questions

The advancement of artificial intelligence (AI) has significantly improved the ability to recognize
human emotions, both through speech and text. This offers transformative potential across
domains such as mental health, education, and human-computer interaction. Speech Emotion
Recognition (SER) and Text-based emotion detection (TBED) have become key areas within
the field of Natural Language processing (NLP), leveraging deep learning to interpret different
emotional cues with increasing accuracy. However, despite these advancements, significant
challenges remain in ensuring that emotion recognition systems are robust, culturally inclusive,
and reflective of real-world emotional expressions. Much of the existing research relies on
acted datasets, which may underperform when it comes to subtle, spontaneous emotions in
everyday contexts, and there is a notable gap in understanding how these models perform
across diverse linguistic and cultural situations, such as the Swedish language. The number of
studied languages is not that broad, and the studies on accuracy for a new language implies
that more research on the generalizability to other languages is essential. Furthermore, while
speech and text offer complementary perspectives on emotions, their alignment with individuals
own perceptions of their emotions remains unexplored.

This study aims to address the dataset gap by investigating the performance of Al-driven
emotion recognition systems in a specific context: Swedish speech and its transcribed textual
content. By focusing on Swedish — a language with limited prior research in SER — this the-
sis seeks to contribute to a broader understanding of how linguistic and cultural factors can
influence emotion recognition, which is applicable to multilingual understanding for emotion
recognition for different languages. Additionally, the integration of speech and text analysis
gives an opportunity to explore multimodal approaches. The alignment between Al-generated
emotion labels and self-reported emotions is an overlooked area. Although emotions are inher-
ently difficult to define and can be challenging for individuals to self-assess, it is valuable to
examine the alignment between model outputs and people’s own perceieved emotions. Publicly
available AT models and APIs, despite their use in real-world applications, are rarely compared
agaisnt such subjective human data, making this comparative evaluation both novel and scien-
tifically signficiant. The purpose of this thesis is therefore to explore how the Llama-3 model
from NLP Cloud and Hume AI recognizes emotions from Swedish speech, to assess whether
its transcribed textual content can convey emotional states independently and compare these
Al-generated labels with self-reported emotions from Swedish speakers. By addressing the spe-
cific challenge of emotion recognition in a less-studied language, the study contributes to the
broader scientific discussion on emotion-recognitions generalizability. The study will provide
insights into alignment between speech and text modalities, cultural emotional expression, and
the alignment between Al outputs and human experience.

To explore speech emotion recognition for Swedish speech, vocal markers from Swedish
speech recordings will be extracted and compared to a prior study (Ekberg et al., 2023). With
the usage of this research, the performance of an Al model for Swedish can be compared, and
therefore the first research question of this study is:

[1] How does an Al model for speech recognition compare to research on wvocal
markers for emotions in Swedish speech?

Text-based emotion recognition is a commonly used research field, but mostly for English
text. To address this, it is interesting to assess whether transcribed Swedish speech can reveal
emotions independently, which leads to the second research question:

[2] What similarities and differences emerge between emotions detected from audio
features and from the textual transcripts of the same speech data?
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The perception of emotions is a complex field, with few studies made on the alignment between
machine-labeled emotions and human-perceived emotions. To undertake this, its comparison
will be explored in the third research question:

[3] How do Al-generated emotion labels (speech & text-based) compare to self-
reported emotions?

1.4 Scope and Limitations

The scope focuses on Al-based emotion recognition in Swedish speech and text, considering
its constraints in design and resources. The study explores challenges like reliance on acted
datasets, language differences, and the alignment between Al predictions compared to self-
reported emotions. Since this is an exploratory thesis, some limitations are recognized but
accepted for feasibility.

1.4.1 Scope

The study evaluates Al-driven emotion recognition in Swedish, a language with little prior
research in this area. It analyses emotions from about 15 Swedish-speaking participants through
short interviews designed to evoke natural emotions. Particpants, both male and female, have
varying age from 20-78 years. The study includes:

e Vocal Extraction: With Praat Parselmouth, a Python library for Praat software used
for feature extraction from audio recordings (Jadoul et al., 2018).

» Speech-based analysis: Using Hume.ai (Hume, n.d.-a), an API with Al-based emotion
recognition in speech for Al-based speech emotion recognition.

« Text-based analysis: Using NLP Cloud (Cloud, n.d,), an API utilizing AT to transcribe
speech and detect emotions from text.

o Comparison with self-reports: Participants rate their emotions on a scale of 1-6 (1
= very weak, 6 = very strong), compared to Al-generated labels.

To keep this study manageable, it focuses on two semantic orientations, one positive and one
negative designed interview for each participant. Five emotions are derieved from the audio
and are reported by the participants.

The analysis relies on existing Al tools and the API’s Hume and NLP Cloud, as well as
Praat software for voice feature extraction, without developing new models. A mixed method
is used, combining Al outputs with qualitative insights.

1.4.2 Limitations

Several factors limit the study’s depth and generalizability. With only 15 participants, the
dataset is limited, and the results may not apply to all Swedish speakers as well as the findings
may not apply beyond Swedish. The interviews are designed to elicit emotions and may not
fully capture natural emotional responses, since they are partially induced, and the very nature
of the interview setting cannot be directly applicable to real-world environments. The design of
the emotion-eliciting scenarios may not be optimal because of deficient psychological expertise,
even if the scenarios are based on prior research. By the same reason, the composition by the
self-reports could be a limitation in combination with the subjectivity of participants’ emotion
reports, that may be influenced by personal biases or recall inaccuracies. The selected emotion
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categories, commonly used in prior research, include more negative (anger, fear, sadness) than
positive (joy) oriented emotions, leading to potential limitations on self-reports. Focusing on
these emotions may exclude other relevant emotional states, as Hume AI’s output in fact
cover several more emotion labels. Pre-trained Al models are utilized without modifying their
algorithms, which may introduce biases. For vocal extraction, Praat Parselmouth is applied,
which in our implementation, does not cover the full set of vocal features included in the Swedish
research (Ekberg et al., 2023) used for comparison in RQ1.

These limitations are necessary compromises for feasibility within the study’s timeframe
and resource constraints. The study does not aim to develop new Al models or solve all SER
challenges. Instead, it provides initial insights into Swedish emotion recognition, tests existing
Al tools, and identifies areas for future research.

1.5 Disposition

From here, the report is structured as follows:

Theoretical Framework: This chapter explores the underlying theories relevant to this
study. It provides an overview of Natural Language Processing (NLP), Speech Based Emotion
Recognition (SER), Hume.ai, Praat Parselmouth, Text-Based Emotion Recognition (TBED),
NLP Cloud, and theories behind vocal markers in speech. The experiment is explained with
relevant research for the interviews used for this study.

Method and Implementation: This section introduces explanatory mixed method, ex-
perimental approach used to answer the research question. It describes the experimental setup,
data collection process, methods of analysis, and considerations regarding validity and reliabil-
ity.

Results: Presents the collected data and analyses of the research questions presented with
statistical analyses, supported by visualisations.

Discussion: Discussion for each research question, how the results compare with prior
studies and the methodology impact on the results.

Conclusion: Overall conclusion of the study, with key findings, implications and future
research recommendations.
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Theoretical Framework

The following chapter will introduce the relevant theories and key concepts related to emotion
recognition, such as speech-based and text-based models and technologies. This chapter will
explain how vocal features and speech prosody can help to identify different emotions in spoken
languages, using different Al tools and software. This study aims to compare accuracy and
effectiveness of different approaches by conducting interviews and collecting data, which will
be analysed using a Python application. The elements of the Python application for analysing
the data from the interviews will be comprehensively explained in this chapter.

2.1 Affective Computing

Affective computing was introduced by Professor Rosalind Picard in the mid-1990s to early
2000s (Tian et al., 2022). By exploring the ways in which human emotions are recognized, un-
derstood and expressed through different forms of behaviours and communication, the domain
of affective computing is a field that merges the principles of artificial intelligence with insights
from social and behavioural science (Tian et al., 2022).

2.2 Natural Language Processing and Emotion Recogni-
tion

The first English language lexical database was created in 1998 for Natural Language Processing
(NLP) tasks, the term sentiment and emotional analysis came to practice in 2001 to predict
the stock market, and in 2005 the first article was written on emotion and opinion detection
from text (S. Kusal et al., 2023). Concept-level sentiment analysis resources were publicly
available in 2009. Word embedding is the term to represent words for NLP text analysis and
was developed in 2013, the same year as neural network first was adopted in NLP tasks. The
field had a massive upwelling when the transformers concept was published in 2017, followed
by the evolution of BERT, a pretrained model that automated text analysis and classification
in 2018 (S. Kusal et al., 2023).

Traditional approaches for sentiment analysis classification have been used since the past
few decades, which rely on rule-based methods such as “bag of words” method to process text
(Kansara et al., 2020). The method represents text based on word frequency without consid-
eration of word order. It can identify sentence structure, negation, emphasis, subjectivity and
irony. Recent models leverage deep learning algorithms that process raw text by first clean-
ing and preprocessing it, including punctation, stop words and markups, as well as applying
stemming (the process of reducing words to their root form by removing prefixes or suffixes to
simplify text analysis in NLP).

Deep learning applicate artificial neural networks (ANN) to learn tasks using multiple layers
of network. In traditional models only one or two layers could be used, but in deep learning
much more learning power of artificial neural networks is exploited (L. Zhang et al., 2018).
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Studies have shown consistently higher accuracy for sentiment analysis using deep learning
algorithms compared to traditional machine learning algorithms (Kansara et al., 2020).

2.3 Speech-Based Emotion Recognition

Studies about speech-based emotion recognition (SER) have been ongoing since 1978 (Son-
mez & Varol, 2024). SER identifies how something is being said without the context of the
words spoken. These systems are used in many different areas, most often in areas of interac-
tions between humans and machines (Zhang, 2025). A typical SER system contains of three
components: signal preprocessing, feature extraction, and classification (Sahoo et al., 2023).

Although there is a wide range of SER-algorithms, with some approaches using more com-
plex setups that involve Convolutional Neural Networks (CNN) based SER algorithms among
others (Ri et al., 2023), the process of a SER algorithm could look like figure R.1|, involving
several steps as feature extraction, selection and classification.

®3 e —
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Recoanition

Feature
Feature Feature |- Vector = Trained
Extraction Selection Space T Model
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Feature Feature H
Extraction Selection |-

[ ® 0900 Emotions

Figure 2.1: An overview of the stages in SER to analyse speech data for emotion detection
(Sonmez & Varol, 2024)

While emotions can be recognized via many channels such as speech, facial expressions
and text, speech signals are rapid and natural which makes vocal audio fitting for emotion
recognition. According to Sénmez and Varol (2024) there are several key benefits with SER,
such as a limited amount of hardware needed for the capturing the vocal data which simplifies
the process of the vocal data collection. Another benefit is that vocal data being less demanding
in terms of storage, compared to video footage for example, and participants in SER experiments
may feel more comfortable with vocal analysis than face analysis in terms of confidentiality,
resulting in datasets reflecting real emotions more accurately.

2.3.1 Hume Al

Hume is a technology company dedicated to advancing the field of emotion recognition. Having
conducted extensive psychology studies to explore human emotions and the way these emotions
are expressed, Hume AI has used the research to develop advanced machine learning models
(Hume, n.d.-b) as well as using deep learning for the research and development (Brooks et al.,
2023).

The official website of Hume Al outlines several influences on their emotional mapping.
Drawing influence from key figures such as David Hume, Charles Darwin and Paul Ekman,
Hume Al’s research is grounded in these foundational theories of emotions. Paul Ekman’s
“The Basic 6” is mentioned (Hume, n.d.-a) and remains relevant throughout this research.
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One of the measurements used to recognize emotions in vocals with Hume Al in this research
is speech prosody.

Speech prosody gives crucial insights into a speaker’s purpose in their communication. Par-
ticular emotions and the intensity of those emotions are indicated with intonation, rhythm and
pitch of the speaking voice (Thompson et al., 2004; Tomasello et al., 2022). It simply refers
to the patterns and tone in the speech that are not related to the actual words being spoken
(Cowen et al., 2019).

Happiness and sadness show the opposite characteristics of each other, where happiness is
linked to quicker tempo and higher pitch while sadness has the opposite, a slower tempo and
lower pitch. The clear difference between the characteristics serves as the difference in the
speech prosody of the two emotions (Thompson et al., 2004).

In figure @, a visual presentation of Hume AI’s speech prosody model is visible (A, n.d.-a).
Emotions are clustered with other similar emotions, one example being amusement and joy, or
distress and anxiety.

CONFUSION
EMPATHIC PAIN

SADNESS
SYMPATHY AMUSEMENT
SHAME
GUILT

DOUBT
EMBARRASSMENT
HORROR INTEREST

FEAR m AWKWARDNESS

k> - G NOSTALGIA
CONTEMPLATION AESTHETIC APPRECIATION
ANXIETY -
- * R reaLizaTion R ENTRANCEMENT
. B SAIISFACTION
. S Ve o AumiRATION [l ADORATION

“ .
DISTRESS DISAPPOINTMENT [ R CONTENTMENT Love
R
DISGUST v ROMANCE
CONTEMPT :
g DESIRE
b 3X

CONCENTRATION
BOREDOM

CALMNESS

PRIDE

TRIUMPH

DETERMINATION

Figure 2.2: Visual representation of Hume Al’s speech prosody model (Al, n.d.-a)

To ensure a broader range of emotion recognition with a more comprehensive analysis of
human voices in this research, speech prosody is used in combination with another measurement,
vocal bursts.

Vocal bursts play a key role in social communication between humans. They are short
emotional sounds which occur naturally, some examples being laughs, sighs or cries (Brooks
et al., 2023).

Vocal burst and voice have received less attention in the fields of machine learning and affec-
tive computing due to more focus being held on facial expressions. Even if speech prosody has
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been studied more extensively, there has been newer research showing that vocal bursts con-
vey more than ten different emotions with consistency, being mostly consistent across different
cultures as well (Baird et al., 2022).

Figure shows Hume AT’s mapping of non-verbal communication, vocal bursts (Al, n.d.-
h). Emotions are shown and as well as in Hume AI’s speech prosody model, the emotions are
clustered indicating some emotions are more associated with each other.
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Figure 2.3: Visual representation of Hume Al’s vocal burst model (Al, n.d.-h)

While there are other tools for emotion recognition, Hume Al is among the few that are
specifically designed for Voice Al while being able to recognize emotions through specifically
speech prosody and vocal burst with no need to finetune it yourself. Using models needing
finetuning would not fit the scope of this thesis given the limited timeframe, and while there
are other models, like OpenAl whisper, which is an extensively trained model on hundreds of
thousands of hours on data, their main focus leans toward transcribing speech (OpenAl, 2022).
This ultimately led to the decision to use Hume Al

2.3.2 Praat Parselmouth

In the field of software for linguistic analysis, Praat is a well-established tool to analyse different
elements in speech. Being able to estimate elements such as fundamental frequency and inten-
sity among others, Praat holds a broad spectrum of algorithms in acoustics, being a successful
tool for analysing acoustics (Jadoul et al., 2024).
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Designed to provide efficient access to the core functionalities of Praat in Python for pro-
grammers, Parselmouth is an open-source Python library (Jadoul et al., 2018§).

Python is widely used for data analysis, but it had been noted that there were challenges
with analysing acoustics in Praat, this due to the functionality often being missing or scattered
across multiple incompatible libraries.

Parselmouth streamlines and optimizes workflows in a single programming environment by
enabling a deeper integration of the capabilities of Praat in combination with other libraries
(Jadoul et al., 2024). Not designed to replace Praat, but rather a way to enable users to
access the functionality of Praat directly in Python, there some main objectives in Parselmouth
according to Jadoul et al. (2018). Omne objective is to enable users already experienced with
Praat to effectively incorporate its functionality with Python’s scientific tools, being tools that
are not obtainable in Praat. Providing Python users with the ability to utilize the functionality
of Praat, even if they are not experienced users of it, is also an important aspect, as well as
enhancing the optimal aspect of workflow for users preferring to conduct their work within a
single programming language.

The benefits of Parselmouth both in terms of the usage for completing this thesis and overall,
are it being open source and compatible with Python as Python is widely utilized and backed
by a vast community of researchers and engineers, among others. Parselmouth integrates the
different strengths of different approaches to provide a library following the principles of Python
and behaving consistently with other well-known Python libraries.

Parselmouth directly utilizes the official C/C++ source code of Praat instead of having to
reconstruct its algorithms. This simplifies the process since it guarantees full consistency with
Praat without the requirement of learning its scripting language (Jadoul et al., 2018).

There are other similar tools that essentially could accomplish the same task, like Librosa
although it is more tailored for both audio and music analysis. It does have feature extraction
(Babu et al., 2021), but the decision on which software to use for linguistic analysis still falls
on Praat Parselmouth due to it being more fitting for the purpose of this thesis.

2.4 Text-Based Emotion Recognition

In the field of NLP, the comprehension of the context behind words in text-form has gone from
only being able to determine the tone in text to actually identifying the emotions behind them
(Esfahani & Adda, 2024), recognizing these capabilities has valuable practical applications in
enhancing different domains within human-computer interaction (Shelke et al., 2022). Text-
based systems rely strongly on lexical cues, and research shows different types of words carries
different levels of intensity (Chauhan et al., 2024). This highlights both a strength and a
limitation of text-based emotion recognition, as emotional sentiment may go undetected unless
it is verbalized, since emotions may not necessarily be expressed through text (Soleymani et al.,
2017).

Text-based emotion detection relies on four main approaches, according to S. Kusal et al.
(2023). The first approach is keyword-based, which matches words in a text with predefined
emotion keywords from resources like WordNet, adjusting for intensity and negation. The sec-
ond approach is rule-based, and this approach uses linguistic rules and probabilistic affinity to
classify emotions after preprocessing. The third is machine learning-based which applies super-
vised or unsupervised models to classify emotions, extracting key features from preprocessed
text. The fourth and last approach is deep learning-based and it utilizes neural networks to
learn complex patterns from tokenized and embedded text data for emotion classification.

Machine learning classifiers are significantly used in text-based classification, since they
use labelled datasets and are therefore data driven. Machine learning models are trained on
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large number of datasets and learn from experience, with classifiers that contain labels for
input and desired output. Transformer-based models, such as BERT, are based on machine
learning models which are trained on vast amounts of data and can be fined-tuned for specific
tasks. BERT is a deep learning model based on attention processing. It gains a thorough
text-understanding through considering left and right contexts equally. The model solves NLP
issues and is used to train general language models on large datasets (S. D. Kusal et al., 2024).

2.4.1 NLP Cloud

There are limited publicly available APIs for text-based emotion detection (TBED). The deci-
sion to use NLP Cloud for this study consists of several reasons as following. NLP Cloud was
selected for this study because of its extensive model offering, multilingual support, transparent
documentation, and available support for data privacy and security (Cloud, n.d)). Compared
to other alternatives such as Vern AI (Al u.d.) or TwinWord (TwinWord, n.d.), both either
lacked comprehensive documentation and information about the models the API used, NLP
Cloud had technical transparency and many different API endpoints which was most compat-
ible with this research. Additionally, NLP Cloud also provides speech to text transcription,
based on OpenAl’s Whisper model (Cloud, n.d}). OpenAl provides a research report on the
model, which is a speech recognition system_designed to process and transcribe audio with ro-
bustness and generalization (Radford et al., 2022). Contrasting traditional models that heavily
rely on unsupervised pre-training or dataset-specific fine-tuning, Whisper leverages large-scale
weakly supervised training from over 600,000 hours of multilingual audio data. This includes
96 languages beyond English. Whisper handles several tasks, for instance speech recognition,
language identification, and translation.

For text-based emotion recognition, NLP Cloud offers different models, including Distil-
BERT Base Uncased Emotion and Llama 3. DistilBERT is a compressed version of the original
BERT (Bidirectional Encoder Representations from Transformers), developed to reduce model
size and gain faster results while remaining the language understanding capacity. (Qazi et
al., 2025). DistilBERT has demonstrated high accuracy, from 95.7% to 96.6% on benchmark
datasets (Areshey & Mathkour, 2024). However, the model does not natively support Swedish
and using it for this study would require translation of the transcripts, potentially leading to
translation bias or loss of linguistic nuance.

Regarding multiple language performance, a study examined Llama 3 vs. State-of-the-Art
Large Language Models on their ability to detect fake news (Repede & Brad, 2024). Two
datasets were tested, one Romanian and one English. Their proposed Llama 3 model accom-
plished higher precision and accuracy across several metrics in fake news detection. For the
English dataset, the fine-tuned Llama 3 model had lower accuracy compared to ChatGPT 4
and Gemini. Yet, it outperformed these models for the Romanian dataset, which is noteworthy
considering both Romanian and Swedish are underrepresented languages in fields of LLM’s and
NLP relative to English for example. The study by Repede and Brad (2024) also explored their
fine-tuned Llama model compared to its base version. The fine-tuned model outperformed ear-
lier models in distinguishing nuanced categories, particularly for the Romanian dataset where
it achieved a remarkably high accuracy of 68% in one category.

Comparing these two alternatives for text-based emotion detection in Swedish, the fine-
tuned Llama 3 model shows promise as the most suitable choice. Although the exact fine-
tuned version of the model available on NLP Cloud has not been publicly researched, its
built-in compatibility with Swedish, combined with research on a Romanian dataset, makes it
a stronger candidate than DistilBERT. Both models have achieved high accuracy for TBED.
Nevertheless, given this study is aimed to focus on emotion recognition models for Swedish
speech, the Llama model without need for prior translation is a more valuable choice.
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In the beginning of the data analysis, the sentiment analysis endpoint from NLP Cloud with
the fine-tuned Llama 3-70b model was considered and applied for textual emotion detection.
However, the model returns a wide range of emotion classes without sufficient control over
which emotions should be included in the output. In this study, a set of five emotions — anger,
joy, sadness, fear, and surprise — were used to align with previous research on vocal markers
in emotion expressions explained in Vocal Markers. Therefore, the decision to utilize NLP
Cloud’s text generation endpoint instead was made, using their fine-tuned Llama 3-70b model
but with prompting instead of direct emotion classification output (NLP Cloud, 2025). This
model operates as an instruction-following generative language model with ability to respond
to natural language prompts and generate emotions classifications based on how the request
is phrased. This provided more flexibility and allowed control of which emotions should be
included in the output as well as the format by prompting with instructions.

For the aim of this study where emotion detection from Swedish interview transcripts is
explored, the fine-tuned Llama 3 model through NLP Cloud’s text generation endpoint was
determined to be the most suitable approach due to its language support, flexibility through
prompting, and ability to control the emotion categories included in the output.

2.5 Vocal Markers

Vocal features have a significant role in distinguishing emotion through speech. It has been
demonstrated that a listener accurately can recognize different emotions based on vocal cues,
suggesting that emotional vocal expression has different patterns (Banse & Scherer, [1996).
Acoustic variables that are involved in signalling emotions vocally include the fundamental
frequency (pitch), vocal energy (intensity, loudness), the location of frequency formants (F1,
F2, F3) which is associated with how articulation is perceived, and speech tempo. High arousal
states include increased pitch and intensity, are related to positive emotion states as happi-
ness/joy. These features indicate the same in Swedish (Ekberg et al., 2023), where acoustic
markers for five different emotions (anger, happiness, fear, sadness, surprise) were studied on
fourteen acted sentences, each sentence articulated expressed with each emotion. Happiness
presented highest fundamental frequency, increased loudness (intensity) and second highest
harmony-noise-ratio (HNR). These results describe the largest pitch SD (6.25) for happiness, im-
plying acoustic variability. Similar patterns are presented in a review on 108 studies (Kamiloglu
et al., 2020), including twenty-six that researched acoustic features on positive emotions. Pitch,
loudness, and formant features revealed the strongest indicators of positive emotions when com-
pared with neutral vocalizations. The review suggests candidates as HNR indicating happiness
as well but explain that clear conclusions cannot be composed due to limited empirical evidence.
Anger shares increased pitch and vocal energy with joy (Banse & Scherer, 1996). The Swedish
study indicates this pattern as well, although anger is not captured by frequency features sepa-
rately but by amplitude cues as HNR and intensity (Ekberg et al., 2023). HNR exhibited lower
values than for happiness and fear, but higher than sadness and surprise. Sadness is predicted
by lower intensity and pitch with slower speech rate, aligning with results on the Swedish
language (Ekberg et al., 2023; K. Scherer, 2003). Vocalised fear is associated with panic in
(Banse & Scherer, 1996), where pitch and frequency formants are heightened with increased
rate of articulation. The Swedish report does not describe fear aligned with panic, although
the opposite is not mentioned. The results showed second highest pitch, third highest loudness,
and top HNR value. Frequency related jitter distinguished fear with the lowest value of the
emotions. Jitter alongside amplitude associated shimmer characterised surprise in the Swedish
results, with lower loudness and pitch than anger and happiness. Surprise is not included with
listed values in the other studies referred to in this subsection.
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The results from the Swedish study (Ekberg et al., 2023) on emotional acoustic features
are presented in Figure with mean and standard deviation values for the five emotions.
Other studies mentioned (Banse & Scherer, [1996; Kamiloglu et al., 2020; K. Scherer, 2003)
and additionally Figure @ (Khalil et al., 2019) demonstrate similar vocal expression patterns,
but are mainly studied on English. Therefore, the results from the research on Swedish speech
will serve as our reference when categorising emotions based on vocal markers in this study,
although this thesis does not use all acoustic features to measure emotions.

TABLE 2.
Comparisons of Acoustic Parameters Between Emotions
Acoustic features Anger Happiness Fear Sadness Surprise Comparisons
(parameters)
M (SD) M (SD) M (SD) M (SD) M (SD) F P pEta2 Post hoc-tests (Bonferroni adjusted)
Frequency-related:
pitch 5.00 (5.39) 7.18 (6.25) 5.81(2.31) 3.99 (5.36) 3.56 (4.14) 2.77 0.029 .068 Happiness > Surprise (P=0.039)
jitter -0.13(0.38) 0.58(0.38) -0.98(0.41) 0.32(0.39) 2.14(0.39) 8.24 <0.001 .178  Surprise > Anger (P < 0.001)

Surprise > Fear (P < 0.001)
Surprise > Sadness (P=0.014)

F1Frequency 0.78(0.34) 1.75(0.34) 1.47(0.37) 0.12(0.35) 0.57 (0.35) 3.60 0.008 .086 Happiness > Sadness (P=0.012)

F2Frequency 1.20(0.35) 1.94(0.35) 1.75(0.37) 0.23(0.36) 1.03(0.36) 8158 0.009 .085 Happiness > Sadness (P=0.008)
Fear > Sadness (P=0.038)

F3Frequency 0.80(0.34) 1.59(0.34) 0.88(0.37) -0.10(0.35) 0.72(0.35) 2.95 0.022 .072 Happiness > Sadness (P=0.008)

F1Bandwidth -1.05(1.29) -0.96(0.95) -0.44(0.94) -0.88(1.35) -0.82(0.88) 1.38 0.244

Amplitude-related:

shimmer -1.03(0.21) -1.02(0.21) -1.43(0.23) -1.02(0.22) 0.13(0.22) 7.12 <0.001 .158  Surprise > Anger (P=0.002),

Surprise > Fear (P < 0.001)
Surprise > Happiness (P=0.002)
Surprise > Sadness (P=0.003)
loudness 7.16(0.66) 6.49(0.66) 5.09(0.71) 2.96(0.68) 1.24(0.68) 13.36 <0.001 .260  Anger > Sadness (P < 0.001)
Anger > Surprise (P < 0.001)
Fear > Surprise (P=0.001)
Happiness > Sadness (P=0.003)
Happiness > Surprise (P < 0.001)
HNR 2.36 (0.52) 3.99 (0.52) 4.83 (0.55) 2.16 (0.54) 1.31 (0.54) 7.09 <0.001 .157 Fear > Anger (P=0.014)
Fear > Sadness (P=0.007)
Fear > Surprise (P < 0.001)
Happiness > Surprise (P=0.004)

alphaRatio 2.52 (0.40) 2.15 (0.40) 1.14(0.43) 1.95 (0.41) 0.48 (0.41) 4.05 0.004 .096  Anger > Surprise (P= 0.005)
Happiness > Surprise (P=0.043)

Hammarberg -1.57 (0.28) -1.19(0.28) -0.74(0.30) -1.4(0.29) -0.35(0.29) 2.97 0.022 .072  Surprise > Anger (P=0.032)

slopeVOV500 2.53(0.43) 2.68(0.43) 4.90 (0.46) 2.76 (0.44) 1.81(0.44) 6.54 <0.001 147 Fear > Anger (P=0.002)

Fear > Happiness (P=0.006)

Fear > Sadness (P=0.010)

Fear > Surprise (P < 0.001)
slopev500V1500 1.45 (0.32) 1.57 (0.32) 1.28 (0.34) 0.35(0.33) 0.12(0.33) 4.21 0.003 .100 Anger > Surprise (P=0.042)

Happiness > Surprise (P=0.019)

F1Amplitude -0.3(0.22) -0.31(0.22) -0.19(0.24) -0.49(0.23) -0.85(0.23) 1.30 0.274

F2Amplitude 0.32(0.20) 0.43(0.20) 0.21(0.21) 0.10(0.20)  -0.56 (0.20) 3.68 0.007 .088  Anger > Surprise (P=0.024)
Happiness > Surprise (P=0.007)

F3Amplitude 0.34(0.20) 0.46(0.20)  0.24(0.21) 0.14(0.21) -0.52(0.21) 3.54 0.009 .085 Surprise < Anger (P=0.030)
Happiness > Surprise (P=0.008)

H1H2 1.44 (0.24) 1.61(0.24) 0.66 (0.25) 0.48 (0.25) 1.13(0.25) 4.00 0.004 .095 Happiness > Sadness (P=0.012)

H1A3 -0.91(0.29) -1.19(0.29) -1.61(0.30) -1.40(0.29) -0.83(0.29) 1.23 0.301

Temporal-related:

loudnesspeaksRate -1.79(0.27) -1.35(0.27) -0.71(0.28) -1.30(0.27) -0.13(0.27) 5.65 <0.001 .129  Surprise > Anger (P < 0.001)
Surprise > Happiness (P=0.016)
Surprise > Sadness (P=.029)

voicedLength 0.28(0.19)  0.31(0.19) 0.17(0.20)  0.35(0.19) -0.40 (0.19) 2.68 0.034  .066

unvoicedLength 0.15(0.27) -0.05(0.27) -0.17 (0.28) 0.42(0.28)  0.22(0.28) 0.69 0.598

pseudoyllableRate -0.34(0.19) -0.22(0.19) -0.26(0.20) -0.38(0.19)  0.44 (0.19) 3.00 0.020 .073  Surprise > Anger (P=0.046)

Surprise > Sadness (P=0.034)

Note: F1Frequency = Frequency- formant 1, F2Frequency = Frequency-formant 2, F3Frequency = Frequency-formant 2, F1Bandwidth = Formant 1 bandwidth,
HNR = Harmonics-to Noise ratio, AlphaRatio = Alpha ratio, Hammar = Hammarberg index, vOv500 = Spectral Slope V 0-500 Hz, v500v1500 = Spectral slope V
500-1500 Hz, F1IAmp = Formant 1 relative energy, F2Amp = Formant 2 relative energy, F3Amp = Formant 3 relative energy, H1H2 = Harmonic difference H1-H2,
H1A3 = Harmonic difference H1-A3, LoudPeak = Rate of loudness peaks, Voice = Length of continuously voiced regions, Unvoice = The length of unvoiced
regions, Pseudo = Pseudo syllable rate.

Figure 2.4: Table comparing acoustic parameters between emotions (Ekberg et al., 2023)

The mean loudness divergencies between different emotions is shown in table @ come with
a very small standard deviation (e.g. o = 0.66 for anger mean = 7.16, happiness mean = 6.49).
Contrasting, pitch differentiates between 2-6 o. This suggests that loudness varies far less
reliably than pitch across anger, happiness and fear. According to Banse and Scherer (1996)
is the fundamental frequency (pitch) the most studied and perceptually prominent feature.
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Happiness is one of the emotions that can be identified from pitch, yet both Banse and Scherer
(1996) and Ekberg et al. (2023) shows this positive emotion a wide overall acoustic spread.
Figure shows a table of variations in different emotions measuring the acoustic parameters
pitch, intensity, speaking rate and voice quality which are often used to identify emotions (Khalil
et al., 2019). Additionally, Figure displays a wider variety of more specific acoustic features,
figure 3.5 provides a foundational understanding of different acoustic features connected to the
different emotions.

Emotions  Pitch Intensity Speaking Voice qual-
rate ity

Anger abrupt on much marginally breathy,
stress higher faster chest

Disgust wide, lower very much  grumble
downward faster chest tone
inflections

Fear wide, lower much faster irregular
normal voicing

Happiness  much higher faster/slower  breathy,
wider, blaring tone
upward
inflections

Joy high mean, higher faster breathy;
wide range blaring

timbre

Sadness slightly nar-  downward lower resonant

rower inflections

Figure 2.5: Acoustic variations in different emotions (Khalil et al., 2019).

These findings will serve as a reference point for the comparison between vocal markers
and speech-based emotion recognition, not only for the categorisation function but also for
exploring patterns between extracted vocal features and previous research.

2.6 The Experiment

An experiment was be conducted and will consist of short voluntary interviews. These inter-
views were recorded for data collection and used to extract emotions with a Python application
and analysed with a speech-based and text-based AI model.

2.6.1 Python Application

The Python application serves as the central system for processing and analysing emotions
in speech and will integrate several tools and frameworks to extract emotions. The overall
structure is illustrated in Figure R.6.
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Figure 2.6: Overview of the Python application structure.

analysis)

Recorded audio is processed through the application, including feature extraction with
Praat Parselmouth, and manual categorisation of emotions based on these features, explained
further in Method. The audio is processed through both Hume AI and NLP Cloud,
where prosody and vocal bursts are analysed with Hume to detect emotional cues from pitch,
intonation and vocal bursts. NLP Cloud is used to transcribe the audio to text and analyse
the textual content with a text classifier model fine-tuned for sentiment analysis, described in

4.1 NLP Cloud. The application includes statistical analysis for an simple interpretation of
different measurements and output correlations, specified in Statistical Analysis.

2.6.2 Interviews and Surveys

The semi-structured interviews involve voluntary participants engaging in short audio-recorded
interviews, designed to draw out natural emotional responses. The participants will be asked
questions to prompt them to recall and reflect on past experiences which encourages them to
revisit emotions they felt at that time. As the format of the interviews are semi-structured and
involve spontaneous speech unlike acted datasets, a well-known challenge emerges. Spontaneous
vocal data tends to involve more neutral expressions, and research have shown some emotional
classifiers to have a lower accuracy in detecting neutral statements (Cao et al., 2015). This
is also supported by other research, stating that acted speech shows higher levels of intensity
(Chakraborty et al., 2016). While spontaneous speech presents some documented challenges, it
also reflects real word conditions. For ethical purposes the participants will be given a selection
of topics to choose from, minimizing the risk of discomfort or distress. The audio recordings
will be anonymous and recorded in a controlled acoustic environment to ensure minimal noise
interference.

Questions asked during the interview follow one of many emotion induction techniques,
known as “autobiographical recall”. This is a method used to facilitate the re-experiencing of
emotions felt in a previous moment (Siedlecka & Denson, 2019), which is what is intended
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for the interviews to be able to collect emotional data from vocal recordings. By letting the
participant think and speak about a memory from the past, emotions felt in that moment
reflect in their voice. After the interview is done, the participants will answer a survey doing a
self-assessment of their emotions felt during the interview. This will enable a comparison be-
tween emotion detection and the participants reported emotional experiences. There are many
different methods for self-assessment, and emotional self-assessment is linked to many different
theories. Many are connected to emotional intelligence (EI), trait emotional intelligence (trait
EI) and Core Self Evaluation (CSE) (Montasem et al., 2013), but rather than conducting a
comprehensive exploration of different psychological theories in self-assessment, this research
will use simplified surveys at a basic level for the purpose of fulfilling the technical objectives
of the work and align with the technical focus of the thesis. The theories behind the interviews
are stated in the possibility of detecting emotions in voices. While there are a lot of recognized
emotions that can be detected in different AI models and software tools, the interview will focus
on bringing out two different basic emotions to maintain a manageable scope, while ensuring
ethical feasibility.

Research has stated that there are different levels of unique universal signs for different
affective states and while there are evidence supporting the universality for certain emotions
such as anger, fear, surprise, sadness, happiness and more, there are also emotions that do not
include all characteristics that distinguish them from other mental states, two examples being
guilt and shame (Ekman & Cordaro, 2011). Research of this nature supports the rationale
for having the focus solely on two of the basic emotions for this thesis. The questions in the
interviews will focus on bringing out two separate emotions, one on the positive spectrum, joy,
and one on the negative spectrum, anger.

2.7 Statistical Analysis

Pearson Correlation Coefficient

Pearson’s r is a measurement of the strength and direction of a linear relationship between two
variables. The value range is from -1 to 1, where positive values implies a positive correlation
and negative values the opposite. Values close to +-1 indicate a strong correlation, values
between +-0.30 and +-0.49 a moderate correlation, and values below +-0.29 are seen as a weak
correlation. Values around 0 implies no linear correlation (Bruce & Bruce, 2017).

P-Value

A p-value indicates if the observed results have a probability of occurance by chance. A widely
accepted threshold for statistical significance is p < 0.05, which means there is less than a 5%
possibility that the observed effect is random (Bruce & Bruce, 2017).

Z-score Standardization

Acoustic features such as pitch, intensity, jitter and shimmer can have great variation. To
ensure comparability in statistical analyses, features are often standardized using Z-score stan-
dardization (Ekberg et al., 2023). This method transform data to have a mean of zero and a
standard deviation of one, ensuring meaningful comparisons across features. By this, a variable
does not have an overly influence due to a scale of the measurement. The measurements are
described as "standard deviations away from the mean”. (Bruce & Bruce, 2017).
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Standardized Distance for Emotion Categorization

Emotion categorization based on vocal features can be operated through standardized distance
methods, where deviations from the baseline of acoustic profiles are quantafied. Using stan-
dardized differences allow an interpretable measure of how vocal features aligns with expected
patterns for each emotion (Ekberg et al., 2023) (Bruce & Bruce, 2017). The categorization
method used in this study is a custom method inspired by this standard practice.

ANOVA Tests

ANOVA (Analysis of Variance) is a standard statistical method used to determine if there are
any significant differences in means across multiple groups Bruce2017. It is used to categorize
grouping factors and are one method in the Swedish research for vocal markers Ekberg2023.

Tukey’s HSD

When ANOVA presents significant differences between group means, Tukey’s HSD test is in-
corporated as a post analysis to identify which groups are divergent from each other. This
method controls for errors when making multiple comparisons (Bruce & Bruce, 2017)).

T-Tests and Cohen’s d

Paired T-tests are used to compare the means between two groups to determine statistical
significance, while Cohen’s d provides a standardized measure of the effect size which indicates
the magnitude of the observed differences (Cohen, 1977) (Bruce & Bruce, 2017)).
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Method and Implementation

This chapter outlines the work process for this study, designing a methodical approach to in-
vestigate emotions in Swedish speech using both Al-based analysis and self-reported data. The
chapter describes the study’s approach and design, justifies methodological decisions, provides
details regarding data collection and analysis procedures, and addresses validity and reliability
considerations.

3.1 Approach and design

This study adopts an explanatory sequential mixed method approach, which integrates both
quantitative and qualitative approaches in a structured sequence. The study first collects and
analyzes quantitative data, as Al-generated emotion labels and self-reported emotions, and then
qualitative interprets the results to explore alignment and divergence. This approach ensures
a systematic, layered analysis rather than pure comparison (Creswell & Creswell, 2023).

The study follows a deductive research approach, as it builds upon existing theories of emo-
tional expression in text and speech. The AI models will be tested and compared to established
findings. Instead of developing new theories, the study aims to evaluate whether Al-based emo-
tion recognition methods align with each other, prior research on vocal emotion markers and
self-reported emotions for Swedish speech. This is classified as an experimental study, as it
involves a controlled setting where participants are asked questions on predefined emotional re-
call scenarios. It does not manipulate independent variables in a traditional experimental way
(Creswell & Creswell, 2023), instead observes and analyzes the natural emotional responses
provoked through structured questions (Bryman et al., 2022).

The study evaluates Al-generated emotion labels from speech compared with existing re-
search on vocal markers, text-based emotion recognition and self-reported emotions. The
self-reports serve as a reference point and not a ground objective truth, to acknowledge the
subjective nature of emotional perception.

3.2 Data Collection

The study involves participants for semi-structured interviews where they respond to prede-
fined scenarios to provoke emotions. FEthical considerations, such as informed consent and
anonymization, are followed firmly to ensure participant well-being. In the first phase, inter-
views are collected for analysis.

16 Swedish speakers, primarily acquaintances to the researchers, are recruited via invita-
tions. Interviews include 2 scenarios, each scenario includes 5-7 questions designed to elicit
either positive or negative emotions, the participants select one of these questions for each
semantic area, to maintain freedom in the speech as well as avoiding asking questions the par-
ticipant are not comfortable to answer. The participants are not pre-informed about the feeling
that are aimed to be provoked during the interviews. The scenarios have been pilot-tested for
effectiveness. The interviews are recorded in a quiet room. Each scenario last between 2 and 4
minutes with breaks between them, the order of the scenarios varies to minimize affecting the
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results because of the possibility of the order influencing the different emotions. Each recording
have been edited to delete our questions and any longer silent pauses.

Participants are asked open-ended questions designed to bring out previously lived through
personal experiences of anger and happiness. The questions about anger are focused on pre-
vious experiences of unfair treatment and frustration regarding their everyday lives or society,
while the questions related to happiness explore moments of pride and unexpected joy through
memories. The semi-structured format allows for follow-up questions based on participant re-
sponses, to bring out as much emotion as possible. The follow-up questions include "How did
that make you feel?”, ”Can you evaluate on that specific situation?”, and "What feelings did
you experience?”. See Appendix for the full list of interviews.

Audio is recorded and pre-processed to reduce background noise and normalise volume.
Vocal markers from each recording are extracted using Parselmouth, a Python library for vocal
feature extraction, to answer RQ1. The audio is analysed simultaneously using two emotion
recognition models: Hume.ai to extract speech-based emotional labels, and NLP Cloud to
transcribe the speech and then analyse the textual content in terms of emotion scores. The
same dataset is used for all research questions to ensure consistency.

The diagram in Figure visualizes the multi-modal pipeline used in this study. The
interview audio files are processed through three primary channels: speech-to-text transcription
via NLP Cloud, Speech emotion recognition via Hume AI and acoustic feature extraction
via Praat. These channels represent two main pipelines. The entities presented in yellow
are prevalent in both pipelines, where the audio recordings are analyzed with Hume AI, the
output is filtered to the 6 emotions analyzed in this study. The pipeline illustrated in green
represents the analysis to answer research question 1. The vocal features extracting utilizing
Praat Parselmouth are chosen are based on previous research, see 2.5, Theoretical Framework -
Vocal Markers, where pitch, intensity/loudness, formant frequencies (F1, F2, F3), HNR, jitter
and shimmer have distinguished values for certain emotions. To compare the extracted data
with Hume AI, these values are clustered into emotion groups. Data from speech analysis and
vocal markers are combined to statistically analyze the results for RQ1. The pipeline used
to answer the second and third research question is presented in orange. Interview audio is
processed the same way as for RQ1 but extended with normalization for the Hume values to
enable comparison with outputs from NLP Cloud and self-assessment. For text-based emotion
recognition, the recording is transcribed before text-analysis is composed. Results from speech
and text prediction are combined with the self-assessment scores to answer RQ2 and RQ3.
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Figure 3.1: The multi-modal pipeline used in this study.

3.2.1 Research Question 1

How does Al-model for speech emotion recognition compare to research on vocal
markers for emotions in Swedish speech?

To answer this question, speech recordings are collected from participants as they describe
emotionally charged experiences. Al-based emotion recognition using Hume.ai, are used for
Al-based Speech Emotion Recognition. Voice feature extraction from the recordings is made,
to compare to Al-labeled emotions with known vocal markers from existing Swedish emotion
research (Ekberg et al., 2023).

3.2.2 Research Question 2

What similarities and differences emerge between emotions detected from audio
features and from the textual transcripts of the same speech data?

To answer the second question, the recorded speech is transcribed and analyzed for emotion
recognition using NLP Cloud’s emotion recognition to assess the emotional content of speech
transcripts. The text-based Al labels are compared with speech-based Al labels to determine
whether emotion is preserved in textual content alone.
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3.2.3 Research Question 3

How do Al-generated emotion labels (speech & text-based) compare to self-reported
emotions?

For the third question, participants complete a self-assessment survey after each interview
segment, where they rate their emotional state on a 1-6 scale (1 = very weak, 6 = very strong)
for relevant emotions. The self-reported emotions are compared with Al-generated labels from
both speech and text models to analyze agreement and divergence. The results are clustered
as agreements, partially agreements, and disagreements across methods.

3.3 Data Analysis

To systematically evaluate the agreement between different emotion detection methods, a com-
bination of statistical analyses and visualizations was applied for speech-based Al, text-based
Al vocal markers, and self-reported emotions. The analysis aimed to assess the alignment with
established vocal marker research and subjective human perception, where identification and
categorization of differences where analyzed.

Visualised analysis is included as a complement to tables with data, for easy interpertation
of how the different methods correlate and observe behavioral differences, or where the models
agree. This includes correlation heatmaps, confusion matrices of top emotion labels, scatter
plots illustrating two methods mean emotion probability, and bar charts. Individual clips are
presented with bar charts and diagrams representing changes over time segments.

3.3.1 RQ1: Emotion Categorization from Vocal Markers

We analysed each of the 30 clips in several stages to answer the first research question. Extracted
vocal features included mean pitch (st, Hz), mean intensity(dB), mean hnr (dB), F1, F2, F3
formants (Hz), jitter and shimmer see Theoretical Framework First, acoustic features
were categorized in five emotion groups based on standardized dlstances based on Table
Because of the method yielded near uniform emotion scoring ( 0.20), a rule-based function was
developed and refined through four variants (V0-V3), where threshold adjustions and anchors
was applied to each layer.

Standardized distance function

e 1. Predefined means and standard deviations for each vocal features identified for each
emotion were retrieved from the Swedish research (Ekberg et al., 2023). These features
are stored in JSON format.

e 2. For every feature included in a recording, the function calculates the standardized
distance between the measured vocal value and the mean for each emotion:

[z — p
g

demo +=

where x is the observed value, and u, o are the mean and standard deviation for the pair
of feature and emotion.

e 3. To increase the functionality, distances are inverted so smaller distances can result
in higher emotion scores. This is calculated with the function below, where € is a small
constant to avoid division with zero.

1/(demo + €)
> 1/(de +€)

SCOT€emo =
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e 4. The output is a normalized probability value that is distributed across all five emotions.

Baseline for neutral speech was not described in the reffered research, therefore the baseline for
this study is the average vocal features of all clips. Analysis of our data yielded every emotion
probability around 0.18-0.22 for each clip, appearing creating arbitrary scores. This motivated
the rule-based approach.

Rule-based method: V0 (Global K)

To mark outer values, 90% confidence interval were used to mark the outer population (Bruce
& Bruce, 2017) yielding the critical value Z = + 1.645 0. Our threshold K_EXTREME
was therefore initialized to 1.6 o for all emotions. For the normal distribution range we used
roughly 1.5 standard deviation from mean, as K_NEAR = 1.25 o. Benchmarks from Ekberg
et al. (2023) were applied:

« 7anger”: [("hnr”,”below”), (7jit”,”below”), ("loud”, "above”)]
e "joy”: [("pitch”,”above”), ("hnr”,”above”), ("loud”,”above”)]
e "sadness”: [("pitch”,”below”), ("hnr”,"below”), ("loud”, "below”)]

o “fear”: [("hnr”,”above”), (7jit”,”below”)]

« “surprise”: [("jit”,”above”), ("shim”,”above”)]
If any emotion goes beyond the extreme threshold, the emotion is scored.

For all eight features, if the clip value is within the K_NEAR, 1.25 ¢ of an emotion’s mean,
one more point is added, to ensure typical matches are added even if no extreme cue is found.

After the functions loop, each emotion has a score and the highest score is assigned the
clip’s main emotion label.

VO resulted in mainly anger and surprise scores.

Rule-based method: V1 (Per-emotion K)

K EXTREME values were adjusted for all emotions. Justifications is described in Theoretical
Framework explaning wide spread acoustic pattern for happiness and similar vocal palette
as anger. Therefore, joy was set to a smaller extreme value while heightened for anger. Joy =
0.5 ¢ Anger = 1.6 0 Others = 1.0 o

V1 showed the same results as VO with no distinct difference.

Rule-based method: V2 (4 Feature Weight)

V1 was extended with utilizing the standardised function as fallback before returning the
loaded dictionary with emotion scores. The returned values from the standardised function was
multiplied with 0.25 and added to the rule-based versions result.

Initially, all vocal features were equally weighted as 1.0. For this version, loudness were
decreased to 0.5 motivated by prior research showing that loudness is the least discriminative
of the vocal features extracted for this study as explained in R.5.

The approach yield more dispered emotion scores but still rated anger as top-label for more
than 50% of the recordings.

31



Rule-based method: V3 (4 Benchmarks)

Benchmarks cues for anger, joy, and sadness was implemented to avoid overlabeling. To yield
a score, anger are required to have at least two benchmark cues, ensuring at least two of the
emotion-specific benchmarks (see VO0) is fulfilled. Joy and sadness need one of their individual
benchmark. This approach avoids false scoring.

Other emotions skip this gate and can only get their scores from their seperate benchmarks.
Each score is worth 1.0 points.

This gating is motivated by data from Ekberg et al. (2023), see Theoretical Framework @,
showing that pitch and intensity are most distinctive for the two high-arousal emotions. while
single universal cues caused possibly misjudged positives in the pilot runs Results §.2.1. The
affected clips were analysed seperately and compared to Table for this conclusion.

In this version, the individual extreme values, k, was tested and changed to 1.0 for all except
joy, changed to 0.7. This did not affect the results. Version 3 is the final method that is used
for data analysis in results. The full code is listed in Appendix [7.1].

Analysis rule-based emotion categorisation and Hume AI

Alignment and divergence between the rule-based function and Hume Al emotion probability
is analysed with confusion matrices including both sources top-label for each interview. Mean
rating score for the full dataset is visualised with scatter plots followed by Pearson’s correlation
coefficients to assess relationships and corresponding significance.

3.3.2 RQ1: Comparison Speech-Based AI and Vocal Features

Analysis that are not including the emotion categorisation function includes the following vocal
features: Pitch, Loudness/Intensity, HNR, Shimmer, and Jitter. To explore the relationship
between Hume AI Emotion labels and vocal features, without feature based emotion cate-
gorisation, further analysis were conducted to assess correlation between each acoustic marker
and Hume predefined emotions, presented as a heatmap. Further analyses include one-way
ANOVA tests, see @ for clarification. To track patterns over time and enable more detailed
analysis, each audio recording were segmented into timeframes including Hume AI emotion
scoring and vocal features for that specific segmment. These were analyzed by tracking Z-score
variations, see @, in key vocal features (pitch, intensity, jitter, and shimmer) throughout each
recording. The general time-segment is set to 1.25 seconds. For case examples @, different
time-segments were tested to observe correlation differences depending on segment length for
executed vocal analysis. Beside correlation measurements, top 30% and bottom 70% of emotion
probability time-segments are compared to test wheather the mean z-scored feature differs be-
tween the high vs. low groups. A large t-statistic value indicate a reliable shift in that feature
when Hume rates that emotion high. For the time-segmented analysis, the baseline was set to
the average vocal value for our dataset.

Output from Hume Al include segmented results with individual time stamps, varying for
each clip. Vocal feature extraction is set to a fixed 1.25s window, therefore, the segments are
not fully aligned. By this reason, individual recordings from two interviews are included to
visualise how pitch and intensity behaves for Hume labelled joy and sadness.

3.3.3 RQ2 and RQ3: Speech-Based AI vs. Text-Based AI, Al-labels
vs. Self-Assessed Emotions

For both RQ2 and RQ3, statistical analyses were used to evaluate the alignment between
Al-generated emotion scores and self-reported emotions. This includes Pearson correlation
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coefficients and associated p-values, t-tests and calculations of Cohen’s d to evaluate statistical
significance and effect sizes, see Theoretical Framework @

For all statistical tests, a p-value below 0.05 was considered as statistical significant, im-
plying that the observed correlations or differences were unlikely to have occurred by chance.
These statistical methods were applied to the entire dataset, and separately for negatively
and positively oriented interview scenarios to identify potential contextual differences. For
RQ2, comparisons focused on speech-based vs. text-based Al results, and RQ3 extended the
comparison to include self-reported emotions as a subjective component.

3.3.4 Data Normalization

To enable direct comparison across different sources, all emotion scores were normalized to sum
up to 1. The normalization included the following steps:

e 1. Surprise combination: Hume Al predicted two seperate labels for Surprise, one positive
and one negative. These were merged into a single "surprise” by calculating the average.

o 2. Filtering and formatting: Filtering to only include the five target emotions (anger, joy,
sadness, fear, surprise), since Hume predicted around 30 different emotions. All emotion
labels were converted to lowercase.

e 3. Normalization: The emotion scores were normalized so the sum of all five target
emotion values equals 1. This was done by dividing each score by the total sum of the
emotion values. If the total sum was zero (no emotion detected), all scores were set to 0.

Normalization ensured consistent comparability between the sources, for both AI models and
self-assessments, regardless of scale differences in raw scores.

3.3.5 Visual Analysis

To evaluate the performance of the custom vocal feature-based emotion categorization method,
line plots and bar charts were implemented to visualize differences between the generated scores
and Hume AD’s predictions. The line plot summerizes average emotion scores across the full
dataset, while bar charts presented detailed comparisons for individual audio recordings. These
diagrams emphasizes deviations and alignments between the categorized vocal marker method
and Al-based emotion prediction.

Composite correlation diagrams were used to explore associations between single vocal fea-
tures and Al-generated emotion scores. For these diagrams, Pearson correlation coefficients
were calculated for each emotion and its relation to pitch and intensity, the results are visual-
ized as grouped bar charts to easily identify positive or negative tendencies.

Visualizations were also integrated to support the identification of alignment patterns be-
tween the Al systems, and contributed with insights into how the modality of the AT influences
emotion recognition results. Python have been utilized to create all visualizations.

Given the limited dataset size and timeframe, a combination of statistical methods and
visual analysis, was utilized to balance quantitative data with qualitative interpretation and
support the exploratory nature of this study.
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3.4 Model Configuration

3.4.1 NLP Cloud

The text-based emotion recognition is classified with NLP Clouds finetuned-llama-3-70b model
through prompting, which allows a more flexible approach than their sentiment analysis end-
point, explained further in . Each text input uses the following prompt:

Listing 3.1: NLP Cloud configuration prompt.

prompt = (

"You are an emotion analysis system.

Given a Swedish text, respond only with a JSON
object using these emotion labels:

joy, surprise, fear, anger, sadness.

Each value must be a float between 0.0 and 1.0.

Respond with the JSON directly and nothing else.

f"{transcription}"

)

The prompt that is used returns a JSON response with float values ranging from 0.0 to 1.0 for
each of the emotions with the labels “joy”, “surprise”, “fear”, “anger”, “disgust” and “sadness”.
This approach was chosen to ensure these specific emotions being analyzed due to them being
the feelings of the basic six, which are the feelings used in the research about acoustic features

in swedish speech done by Ekberg (Ekberg et al., 2023).

3.4.2 Hume Al

To ensure consistency across the different models used in this research, some changes have been
made to adjust the output from the Hume AI model to better match the format used in NLP
Cloud. Additionally, NLP Cloud has the feeling surprise while Hume has two different feelings
for surprise, the two being positive surprise and negative surprise. Therefore, the scores of the
two feelings of surprise from the Hume model have been combined in this research to give just
one number that creates the average of the two to match the format.

3.5 Validity and Reliability

3.5.1 Validity

To ensure validity, the interview scenarios are pilot tested to ensure they provoke intended
emotions (Bryman et al., 2022). The use of multiple AI models (speech- and text-based)
allows for cross-validation of results. Standardized interview prompts ensure consistency across
participants. Participant self-assessment serves as a secondary reference to evaluate Al-labeled
emotions. Triangulation across Al, vocal markers, text analysis, and self-assessments enhance
convergent validity (Creswell & Creswell, 2023).

3.5.2 Reliability

To ensure reliability, standardized equipment and scenario are used to ensure replicability.
Hume.ai, NLP Cloud, and Praat provide consistent measures. The AI models used in the
study (Hume.ai and NLP Cloud) are pre-trained and validated emotion recognition systems.
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Correlation will be determined and are used to quantify the reliability of Al models in detecting
emotions. The same data is not analysed multiple times to check if the results are different. The
prompt used for NLP Cloud is therefore zero-shot. The study has a replicable experimental
setup, with documentation supporting replication to allow researchers to reproduce similar
evaluations.

Triangulation is achieved in the study through comparison of speech Al, text Al, and
self-reports which improves creditability. Any discreteness will be analyzed qualitatively to
contextualize potential biases rather than assuming errors. Reliability is ensured through stan-
dardization in data collection. All interviews are preprocessed to reduce background noise and
normalize volume levels. The online tool Auphonic (Auphonic, n.d.) is used for this, due to its
simple usability for noise reduction, ability to cut out pauses and limit loudness. The same data
processing steps are applied consistently for all recordings, ensuring equality in analysis. The
study has a replicable experimental setup, with usage of pre-trained, publicly available APIs,
and documentation supporting replication to allow researchers to reproduce similar analyses.
These measures ensure that our study is generalizable within the scope or automated emotion
recognition for stress analysis.

3.6 Considerations

To consider the implications of this study, several factors must be recognized. To address
ethical and privacy concerns, all participant data is anonymized and securely stored to ensure
privacy. The participants provide informed consent before engaging in this study. The emotion-
provoking scenarios are designed to minimize distress, focusing on natural, everyday emotions
rather than triggering events. The participants will have scenarios to choose from, see 2.2 Data
Collection.

Scientific considerations extend to emotion research to Swedish speech and Al tools. Find-
ings in the study can inform future human-interaction research in emotion-based applications.
Societal considerations include that the insights could enhance Al-driven mental health tools
and future research, especially for Swedish language and real-world interviews.
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Results

4.1 Presentation of Collected Data

4.1.1 Overview of Interviews

We conducted semi-structured interviews with 15 native Swedish speakers (9 M/6F, age 23-78),
each lasting 1-3 minutes. Each participant was interviewed for two different scenarios, resulting
in 30 different recordings. The participants rated their perceived emotions on a 1-6 scale
immediately after each scenario. The rated emotions covered the basic 5 emotions mentioned
in this report: anger, joy, sadness, fear, and surprise. Table presents the participants
ID, gender, age, and self-assessed scores for their perceived emotions for respective interview
scenario. Interview ID 003 is deleted from the data collection.

Participant Negative Positive
ID M/F Age A J Sad F Sur A J Sad F Sur
1 M 2 51 3 1 1 1 6 1 1 4
2 M 26 6 1 3 4 1 1 6 1 2 1
4 F 2r 41 6 1 2 1 6 1 1 3
) M 2 21 3 2 1 1 4 2 2 2
6 F 2 41 4 1 2 1 5 1 1 5
7 M 2 2 2 1 1 1 1 3 1 1 1
8 M 2r 31 2 1 2 1 5 1 1 1
9 F 2 3 1 3 1 1 1 5 1 1 1
10 F w51 3 2 4 1 6 4 1 1
11 F 2r 3 3 2 1 1 1 6 1 1 1
12 M 5 1.3 1 2 1 1 6 1 1 3
13 F 4 4 1 4 3 1 1 6 1 1 1
14 M 20 13 1 2 2 1 4 1 1 3
15 M 30 3 2 2 3 1 2 5 1 1 1
16 M 2 41 2 1 1 1 6 1 1 1

Table 4.1: Participant ID, gender (M/F) and age, with counts of Negative (A = Anger, J =
Joy, Sad = Sadness, F = Fear, Sur = Surprise) and Positive labels per emotion.

4.1.2 Data Collection for RQ1: Vocal Features & Speech

The collected audio recordings from the interviews were processed for research questions 1 to
specifically focus on vocal features and speech-based emotion recognition. See gfor specifica-
tion and data normalization.
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Overview Collected Data

The extracted vocal features, custom emotion categorizations of vocal features, and Hume
Al outputs were combined for each recording and stored in JSON format, to enable direct
comparison and further analysis. All data is normalized to sum up to 1 before loaded into the
JSON files. Table 4.2 includes the mean values and standard diversion for the analysed features
(pitch, intensity, HNR, jitter, shimmer) separated by sentiment. Filtered Hume probabilities
are presented in Table @ as mean values with standardized diversion for positive and negative
recordings. The custom categorization of emotion based on vocal features are presented as
mean values including standard diversions for positive and negative sentiments in Table {.4.

Positive Clips Negative Clips
Feature Mean Std Feature Mean Std
mean_ pitch st —0,3513 6,0752 mean_ pitch st —0,7607 5,8785
mean_ pitch_ hz 155,7733 55,2791 mean_ pitch_ hz 151,5587 51,8871
mean__intensity db 63,5547 3,0952 mean__intensity_db 62,9593 2,5110
mean__hnr_db 95,6053 5,8954 mean__hnr db 5,2880 5,6446
jitter local 0,0253 0,0048 jitter local 0,0250 0,0033
shimmer_ local 0,1278 0,0223 shimmer_ local 0,1264 0,0253
formant_ F1 hz 592,0180 275,6199 formant_ F1_hz 789,0987 344,7615
formant F2 hz 1726,4807 438,5605 formant F2 hz 2021,6813 592,0110
formant_ F3_hz 2856,0840 377,0989 formant_ F3_ hz 3169,5640 383,1132

Table 4.2: Summary Statistics: Vocal Features by Sentiment

Positive Clips Negative Clips
Metric Mean Std Metric Mean Std
hume_ anger 0,2279 0,0600 hume_anger 0,2768 0,0646
hume__ fear 0,1484 00,0530 hume_ fear 0,1568 0,0382
hume_ joy 0,3339 0,1321 hume_ joy 0,2748 0,1047
hume sadness 0,1637 0,0650 hume sadness 0,1769 0,0673
hume surprise 0,1262 0,0217 hume surprise 0,1147 0,0209

Table 4.3: Summary Statistics: Hume AI Probabilities by Sentiment

Positive Clips Negative Clips
Metric Mean Std Metric Mean Std
custom__anger 0,2330 0,0571 custom__anger 0,2527 0,0539
custom__joy 0,2177 0,0836 custom__joy 0,1916 0,0891
custom_ sadness 00,2356 0,0703 custom_ sadness 0,2425 0,0895
custom_ fear 0,1163 0,0612 custom__fear 0,1169 0,0560
custom_ surprise 0,1978 0,0610 custom_ surprise 0,1960 0,0576

Table 4.4: Summary Statistics: Custom Emotion Categorization Scores by Sentiment
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Segment-Level Data

Certain analyses in RQ1 rely on time-segmented data. For each recording, Hume Al returns
emotion probabilities at regular time segments, an example of this is presented in Table @ In
the data analysis, we extract the same set of acoustic features from time-segments with Praat
set to a 1.25s window for general analysis, enabling time-to-time comparisons across modalities.

time (s) anger fear joy sadness surprise

1,47 0,2332 0,1590 0,4244 0,1214 0,0620
5,15 0,1469 0,0342 0,6693 0,0110 0,1387
8,27 10,0993 0,0259 0,7804 0,0184 0,0759

43,2342 0,1216 0,0837 0,5861 0,0500 0,1586

Table 4.5: Segment-Level Hume Probabilities for clip: id 001 neg

4.1.3 Data Collection for RQ2 and RQ3: Text, Speech and Self-
Assessment

The data collection for RQ2 and RQ3 is based on the same audio recordings as for RQI.
Each recording was transcribed and analysed with NLP Cloud (text-based), to extract emotion
probabilities from the transcription. The same audio was analysed using Hume Al for speech-
based emotion detection, resulting in paired emotion probability scores alongside self-reported
emotion ratings. All scores were normalized for comparison.

The data was structured in JSON format, each audio object consists of five emotion labels
from each data type (Hume, NLP, Self).

Table summarize the average emotion scores and standard deviations for both speech-
based (Hume AI) and text-based (NLP Cloud) models across all clips in the dataset.

All Recordings

Emotion Self Mean Hume Mean NLP Mean Self Std Hume Std NLP Std

Anger 0,210 0,260 0,200 0,124 0,072 0,223
Joy 0,312 0,302 0,396 0,200 0,117 0,351
Sadness 0,190 0,167 0,181 0,105 0,065 0,138
Fear 0,136 0,150 0,093 0,061 0,045 0,092
Surprise 0,149 0,118 0,129 0,082 0,022 0,089

Table 4.6: Means and standard deviations of self-reported, Hume, and NLP emotion intensities.

The interviews were conducted with either a positive or negative orientation. Each recording
was analyzed individually, and the data structure distinguishes between negative and positive
audio files. The corresponding emotion scores from Hume Al and NLP Cloud are presented in
Table for positively oriented interviews, and in Table for negatively oriented interviews.
Each table displays the mean and the standard deviation for the respective AI model’s emotion
probability.
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Positive Recordings

Emotion Self Mean Hume Mean NLP Mean Self Std Hume Std NLP Std

Anger 0,103 0,227 0,015 0,032 0,060 0,057
Joy 0,497 0,333 0,708 0,081 0,132 0,169
Sadness 0,117 0,163 0,067 0,059 0,065 0,062
Fear 0,108 0,148 0,040 0,033 0,052 0,067
Surprise 0,173 0,126 0,171 0,008 0,022 0,096

Table 4.7: Means and standard deviations of self-reported, Hume, and NLP emotion intensities
for positive recordings.

Negative Recordings

Emotion Self Mean Hume Mean NLP Mean Self Std Hume Std NLP Std

Anger 0,305 0,289 0,363 0,092 0,072 0,183
Joy 0,148 0,275 0,121 0,106 0,098 0,205
Sadness 0,254 0,171 0,282 0,095 0,066 0,103
Fear 0,161 0,152 0,141 0,069 0,038 0,087
Surprise 0,128 0,112 0,092 0,059 0,021 0,064

Table 4.8: Means and standard deviations of self-reported, Hume, and NLP emotion intensities
for negative recordings.

4.2 Data Analysis for RQ1: Vocal Features & Speech
Emotion Recognition

The first research question explores how vocal features correlates with Al-based emotion detec-
tion in conversational Swedish speech. To analyse this, acoustic features such as pitch, intensity,
jitter, shimmer and HNR were extracted using Praat Parselmouth and compared with emo-
tion scores from the speech-based model Hume AI. A custom categorization method based on
Swedish vocal emotion research (Ekberg et al., 2023) were tested for comparison. The goal with
this analysis was to explore if these vocal markers could explain or predict how speech-based Al
systems interpret emotional expressions in semi-structured, spontaneous speech in an interview
setting.

4.2.1 Evaluation of Emotion Categorisation on Vocal Features

Step-wise alternation of the rule-based function for vocal based emotion probability in Table
1.10 for the tested versions of the category function. Macro F1 scores and UAR (Unweighted
Average Recall) uses Hume labels as a relative metrics are pretended in Table . This should
not be seen as ground truth.

The standardised z-scores yielded higher F1 and UAR. However, the emotion probabilities
were very similar, all around 0.2 points per emotion. By this reason, it is not used. First
version of the rule-based function, VO resulted in near uniform anger top-labels, with F1 score
0.107. Implementing individual extreme values in_V1 resulted in minimal difference from V0.
Decreasing intensity for version V2, see Method , while using the standardised z-scores
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Variant N anger joy sadness fear surprise

SdZ-Scores 30 18 7 0 5 0
VO0_ globalK 30 29 1 0 0 0
V1 perK 30 27 1 2 0 0
V2 featW 30 16 8 3 1 2
V3 benchmark 30 15 8 4 1 2

Table 4.9: Emotion distribution on different versions of categorization function.

Variant Macro-F1 UAR Joy Rec Anger Rec
SdZ-Scores 0,282 0,413 0,4 0,667
VO0_ globalK 0,107 0,183 0 0,917
V1_perK 0,103 0,167 0 0,833
V2_ featW 0,204 0,197 0,4 0,583
V3_benchmark 0,208 0,197 0,4 0,583

Table 4.10: Performance metrics for each version of vocal-based emotion categorisation.

as a fallback minimised the overestimation of anger swapping to top-labelled joy (8), sadness
(3), fear (1), and surprise (2). The dispersed emotion-labelling using V2 resulted in F1 = 2.04
and UAR = 1.97, both increased compared to VO and V1. The benchmark extended V3 with
increased feature weight for pitch yielded in slightly higher F1 score, from 0.204 to 0.208, still
labelling surprise for two clips. This version is used for the further analysis.

4.2.2 Correlation Between Vocal Features and AI Emotion Scores
(Hume AT)

Figure @ demonstrates heatmaps of the Pearson correlation coefficients between selected vocal
features and Hume Al emotion labels across positive clips in Figure f.1a and negative clips in
Figure 4.1H. The results show generally weak correlations, with slightly stronger correlations
for the negative recordings.

Correlation values for positive interviews in Figure ranging roughly between -0.7 and
0.5, most values suggest generally weaker correlations than the highest values. Stronger positive
correlations suggests that certain feature is higher when Hume rates the correlating emotion.
Negative correlations imply the opposite, low value of a certain feature for the correlated emo-
tion. Mean intensity stands out from other vocal features with a moderate positive correlation
with Hume Joy (r = 0.50), a moderate negative correlation with Hume Anger (r = -0.39), a
moderate negative relationship with Hume sadness (r = -0.37) and a strong negative correlation
with Hume Surprise (r = -0.68). Mean pitch shows strongest effect on Hume Fear (r = 0.30) and
a moderate negative link with Hume Sadness (r = -0.21). Mean HNR has a moderate negative
correlation with Hume Sadness (r = -0.30) as well it is moderately positively correlated with
Hume Fear (r = 0.27). Jitter and shimmer remain near zero for most emotions in the positive
clips, with none exceeding |r| = 0.13. This suggests that, in more positively oriented interviews,
variation in pitch, intensity, and HNR capture the core emotion-related cues moderately, while
jitter and shimmer have small predictive influence in semi-spontaneous speech during interview

conversations.

Figure m illustrates Pearson correlation values for negative clips in the dataset, again
presenting generally weak effects even if slightly stronger correlations occur, approximately
ranging between -0.5 and 0.5. The strongest relationship appears for sadness, where mean
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Figure 4.1: Correlation Heatmaps between Hume Al and vocal features.

HNR shows a strong negative correlation (r = -0.43) and moderately negative correlated with
pitch (r = -0.37) and intensity (r = -0.36). Anger had the highest positive correlation with
intensity (r = 0.31) followed by a weak positive link with HNR (r = 0.21) and weak to moderate
negative correlations with jitter (r =-0.30) and shimmer (r =-0.28). Correlations between vocal
features and joy are all perceived weak, shimmer emerges as strongest (r = 0.27) compared to
all other features (r < 0.11). Hume predicted fear presents coefficients indicating no linear
correlation for all vocal features (r < 0.11). Surprise presents a moderate positive correlation
with pitch (r = 0.36) and negative relationship with intensity (r = -0.33), other features are
weakly correlated to the emotion. Jitter and shimmer show similar relationships to Hume Fear
(r 0.2). Shimmer has strongest correlation with Hume Anger, and a moderate relationship with
Hume Joy. Jitter is moderately correlated with Anger as well and have a moderate correlation
with Sadness where shimmer has almost no correlation.

Overall, the negative and positive diversion suggests that intensity consistently reflect Hume
ATD’s anger, sadness, and surprise predictions, and more prominent for joy in positive recordings
and near zero for joy rated in negative contexts. Correlations between pitch and emotions
predicted by Hume is generally weak and varying between the sentiment categories. Jitter and
shimmer remain minor indicators for positive conditions, while having moderate correlations
with Hume anger and joy in negative recordings.
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4.2.3 Correlation with Rule-Based Emotion Scores
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Figure 4.2: Correlation heatmaps for custom categorized emotion scores vs. vocal features.

Figure @ presents heatmaps of Pearson’s correlation r between selected vocal features and
the emotion scores obtained from the custom emotion categorization function for Figure .24
positive oriented clips and Figure §.2h negative clips. In contrast to the correlation results
between Hume Al and vocal markers, these heatmaps present similar values and orientations for
both negative and positive recordings, with values roughly ranging from -0.9 to 0.8 that implies
strong correlations. Pitch, HNR, and shimmer has highly related patterns where the rule-based
function shows a strong negative correlation for anger with pitch and HNR (r(~ —0.87)), joy
have significant relationships with pitch and HNR as well, slightly higher in negatives (r =
0.78). Additionally, these features show a strong negative link with sadness, approximately r
= 0.81 for HNR and r = -0.73 for both sentiments. Strong positive correlations are found with
fear that are corresponding in negatives (r(= 0.77)), but slightly more dispersed in positives
(pitch r = 0.67, HNR r = 0.76). Shimmer has the strongest positive correlation with sadness for
both sentiments ((r ~ 0.57) respectively) and a strong negative relation with joy ((r ~ —0.57)).

Intensity reveals weak correlation across all features in both sentiment contexts except for
a moderate positive relation with surprise in the negative subset (r = 0.38). Beside intensity,
appear only weak correlations for surprise in both subsets (|r| < 0.27). Jitter has somewhat
stronger correlations in negative recordings, where sadness (r = 0.59) and joy (r = -0.63) is
most distinct.

The similar values for pitch and HNR vocal features with strong correlation coefficients, im-
plies that harmonic clarity is weighted almost identically to pitch in the categorization function,
both with a dominant impact on the outcomes of the emotion categorisation.

4.2.4 Correlation Rule-Based Categorization and Hume AI Labels

To explore the alignment of top-labelled emotion by Hume AI and customised categorization
based on vocal features, Figure illustrates the correlations in a confusion matrix, treating
Hume labels as ground truth and comparing these to emotions grouped by the custom function.
For positive recordings, Hume and the custom function agree on anger for one clip, while Hume
rates joy highest in four cases where the rule-based function selects anger. Both methods
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rate joy as the top emotion for four positive oriented clips. Divergencies occur for fear-joy,
sadness-anger, anger-joy, anger-sadness, and joy-sadness pairs.

In negative contexts, the methods agree on anger as the top emotion for six recordings
and agree on joy for two clips. Beside these, the top-rated emotion is discrepant where Hume
labels two clips as joy that the custom function rates as sadness, and two anger-rated clips by
Hume are rated as joy by the customized categorization. Other divergences occur for joy-anger,
sadness-anger, and anger-sadness in single-pairs.
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Figure 4.3: Confusion matrix diagram for top label emotion between Hume and Custom Cate-
gorization.

The mean rated scores for Hume versus custom categorized emotion labels for positive
recordings are illustrated in Figure {.4a, negative in Figure @ As shown, several ratings
follow the same pattern while other emotions diverge, as Hume joy are significantly higher for
both sentiment categories while the rule-based approach overestimated surprise compared to
the Hume ranking.

Rule-based labelled joy, fear, and surprise are ranked similarly in both positive and negative
contexts. This pattern aligns with Hume probabilities that are relatively similar for these
emotions in both subsets, including sadness as well. Anger is the most divergent emotion label
across sentiments, with higher ratings in negative clips that are relatively corresponding in the
diagrams. Significant divergencies between the methods appear for joy, sadness and surprise,
marginally wider dispersed for negative recordings.

Pearson’s correlation coefficients between Hume and rule-based emotion labels are presented
in Appendix Table [7.3, measuring the correlation between each emotion score. No significant
correlation occurs for either of the sentiments. Moderate, yet unsignificant, correlation is
revealed as diverged for anger (r = -0.320, p = 0.2451) where Hume predicts the emotion
higher while rule-based results in lower score for anger in positive contexts. Sadness has a weak
positive correlation between the sources for both subsets (r = 0.265, r = 0.222), suggesting
that the output is correlated, yet unsignificant (p > 0.2). The correlations for the remaining
emotions are perceived weak (|r| < 0.24).
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Figure 4.4: Scatter Plots of Mean Hume and Custom Emotion Scores for positive and negative
recordings.

4.2.5 Limitations of the Custom Vocal Emotion Categorization Method

The rule-based function, customised to group emotions by vocal features, assigns equal top
scores to multiple emotions for the same clip in 27% cases. By contrast, Hume has one singular
top label for 29 of 30 clips. Furthermore, the function cannot see a reliable measurement for
comparison of Hume with vocal markers. Therefore, the following analysis consists of single
vocal marker behaviour in contrast to Hume emotion probabilities.

4.2.6 ANOVA Tables of Vocal Features Across Emotions

An ANOVA was implemented to further examine whether essential vocal features varied across
Hume-labelled emotions. This was conducted on mean values of full recordings for pitch,
intensity, HNR, jitter, and shimmer. The results are summarised in Appendix, Table for
positive recordings and for negative recordings, showing that none of the features showed
statistically significant differences between the five Hume emotion categories (all p-values >
0.13, ranging up to p 0.90). These results imply that within our dataset of spontaneous
speech during interviews, the average values of the acoustic features did not systematically
vary according to Al-labeled emotions.

4.2.7 Time-to-Time Analysis

Time-to-Time Analysis: Full Dataset

To understand both if acoustic cues correlates with emotion probability by Hume and when they
produce clear categorical shifts, two analyses were conducted at time segmented level. These
effects were observed further with sentiment separations of all, negative, and positive contexts to
see if the emotion-acoustic feature relationship are dependent on positive vs. negative sentiment.
Table .11 presents the significant correlations between z-scored acoustic features and Hume
emotions.
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Feature Emotion Pearson’sr p-value Significant
pitch joy 0.065 0.0448 Yes
pitch sadness -0.230 0.0000 Yes
pitch fear 0.082 0.0110 Yes
intensity joy 0.164 0.0000 Yes
intensity sadness -0.142 0.0000 Yes
intensity fear -0.173 0.0000 Yes
intensity surprise -0.110 0.0006 Yes
HNR sadness -0.253 0.0000 Yes
HNR fear 0.112 0.0005 Yes
jitter sadness 0.084 0.0091 Yes
Table 4.11: Significant Pearson correlations for the full dataset.

Only significant correlation is included (all p < 0.05). 9 correlations out of 24 indicated
significance, the full analysis is presented in Appendix [FIGURE REF]. All correlations are
perceived as weak even if there is statistical significance. Pitch correlated positively with joy (r
= 0.065), negatively with sadness (r = -0.230) and positive with fear (r = 0.082). Intensity had
a increased relationship with joy (r = 0.164), but decreased with sadness (r = -0.142), fear (r =
-0.173) and surprise (r = -0.110). HNR showed a weak negative correlation with sadness (r =
-0.253) and positive with fear (r = 0.112). Jitter had a single significant, yet weak correlation
with sadness (r = 0.084). Shimmer showed no significant correlations.

Table compares the top 30% and bottom 70% of emotion-probability time-segments,
and tests whether the mean z-scored feature differs between the high vs. low groups. A large
t-statistic value indicates a reliable shift in that feature when Hume rates that emotion high.

Feature @ Emotion t-statistic p-value Significant
pitch * anger 2.529  0.0116 Yes
pitch joy 2.293 0.0221  Yes
pitch sadness -7.769 0.0000 Yes
pitch fear 5.185 0.0000 Yes
intensity * anger 1.975  0.0485 Yes
intensity  joy 4.602 0.0000 Yes
intensity sadness -3.981 0.0001  Yes
intensity fear -3.567 0.0004 Yes
intensity surprise -2.949 0.0033 Yes
HNR anger 2.709 0.0069 Yes
HNR sadness -7.506 0.0000  Yes
HNR fear 4.914 0.0000 Yes
HNR * surprise 2.287 0.0224 Yes
jitter ** sadness 1.811  0.0705 No

Table 4.12: High-vs-low t-test results for significant acoustic features (full dataset)

High-anger predictions of segmented recordings shifted towards higher pitch (t = 2.529),
.975) and HNR (t = 2.709), none of these associations (*) was significant in the

intensity (t = 1

data for Table

11, Joy segments had increased shifts in pitch (t = 2.293) and intensity (t =

4.602), while fear segments have lower intensity (t = -3.567) and increased pitch (t = 5.185)
and HNR (t = 4.914). High-sadness segments showed notable decreased pitch (t = -7.769),
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intensity (t = -3.981), HNR (t = -7.506), and a small, not significant increase in jitter (**)
(t = 1.811, p = 0.0705) that showed a significant correlation in Table §.11. Segments with
high surprise predictions has the moderately low intensity (t = -2.949) and a modest positive
differentiation for HNR (*) (t = 2.287) with no significant correlation in Table {.11].

Time-to-Time Analysis by Sentiment

(a) Pitch and Anger (Pearson r) (b) Pitch and Anger (t-test)
Sentiment r p  Sign. Sentiment t p  Sign.
All 0.032 0.3284 No All 2.529 0.0116 Yes
Positive -0.042 0.3772 No Positive 1.392 0.1647 No
Negative 0.101 0.0209 Yes Negative  2.642 0.0085 Yes

Table 4.13: (a) Pearson correlations and (b) high-vs-low t-test results for pitch vs. anger by
sentiment.

Table presents an absent correlation between pitch and anger for the full dataset (r =
0.032, p = 0.3284), and positive clips (r = -0.042, p = 0.3772) but a significant, yet weak
correlation in the negative subset (r = 0.101, p = 0.0209). The t-tests in E confirms this
where high-anger segments have moderate higher pitch in the negative set (t = 2.642, p =
0.0085) and in for all clips (t = 2.529, p = 0.0116), but not in positive contexts. This implies
that pitch is a considerable signal of anger when the overall context is negative. Table #.1
presents a significant shift in HNR for Hume anger (t = 2.709, p = 0.0069), yet the correlation
between them were not significant in Table .11 The t-tests reveal stronger differences in HNR
for high vs low anger than both pitch, and intensity (t = 1.975) Together with pitch, HNR
appears to be the most prevalent features correlated with anger in negative circumstances, even
if the shifts in vocal features for this emotion is fairly weak.

(a) Intensity and Joy (r) (b) Intensity and Joy (t-test)
Sentiment r p  Sign. Sentiment t p  Sign.
All 0.164 0.0000 Yes All 4.602 0.0000 Yes
Positive 0.175 0.0002 Yes Positive 3.343 0.0009 Yes
Negative  0.152 0.0005 Yes Negative  2.375 0.0179 Yes

Table 4.14: Intensity—Joy correlations and t-test results by sentiment.

Table demonstrates the correlation between intensity and joy, the most prominent
feature for the emotion. All contexts show a positive relationship, strongest for positive clips
(r = 0.175, p = 0.0002) with significant mean differences where the full dataset has highest
significance (t = 4.602, p < 0.001). Pitch and joy correlations is presented in Table §.11|, showing
unlike anger, a weak correlation for the full dataset (r = 0.065, p = 0.0448). Pitch reaches a
weak correlation with joy in positive recordings (r = 0.110, p = 0.0210) and no significance in
the negative subset. The t-tests is only significant in the full dataset (t = 2.293, p = 0.0221), not
for the positive clips (t = 1.861, p = 0.0701), implying a more context-specific and non-linear
affect. No other features revealed significancy in either correlation or t-statistics. These results
suggests that intensity is a reasonably stable cue to joy regardless of the overall sentiment
context, even if higher correlation occurs for the full and positive sets than the negative subset
(r = 0.152 and t = 2.375).
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(a) Pitch and Sadness (r)

(b) Pitch and Sadness (t-test)

Sentiment r p  Sign. Sentiment t p  Sign.
All -0.230 0.0000 Yes All -7.769 0.0000 Yes
Positive -0.275 0.0000 Yes Positive -6.332  0.0000 Yes
Negative  -0.187 0.0000 Yes Negative  -4.980 0.0000 Yes

Table 4.15: Pitch—Sadness correlations and t-test results by sentiment.

Table display sentiment correlations for pitch and Hume predicted sadness, with signif-
icant difference between high and low groups indicating prominent shifts in pitch when Hume
rates sadness high. Correlations are weak, but significant for all sentiment contexts. Positive
recordings show the largest negative correlation (r =-0.275, p < 0.001), although the full dataset
reveals greater diverge in variations (t = -7.769, p < 0.001) which is the largest t-statistic for
all emotion-feature groups. Intensity has a weaker shift than pitch for high-sadness segments
(t = -3.981) while HNR demonstrates a similar pattern as pitch (t = -7.506). These prominent
feature-shifts suggests that reduced pitch and HNR are indicators of sadness independent from
sentiment orientation.

Case Examples

For a more concrete illustration of the prior tendencies, three interview recordings were anal-
ysed in detail. The purpose was to examine whether emotional shifts become more apparent
when evaluating shorter time segments within individual speakers, compared to the weaker
correlations observed at the dataset level. The navy dashed trace represents the probability of
the emotion estimated by Hume, scaled to 0-1 on the right y-axis. The solid blue and orange
curves show mean vocal features for time-segments, plotted as Z-scores against the left y-axis.
The x-axis represents time given in seconds.

id_006_pos: Vocal Z-Scores & Hume Over Time

Vocal Features
Mean Pitch Hz
Mean Intensity Db | 0.7

| Hume Emotions
= Jo
Joy ’(I

oS o
> o

o
w
Hume Emotion Probability

Vocal Feature Z-Score

o
N

o
o

o
o

20

40

60

80

100

Time (s)

Figure 4.5: Pitch and Intensity vs. Hume Joy for single positive clip.

Figure @ illustrates some similar patterns between high-predicted Hume joy, pitch and
intensity that show similar magnitude as the emotion trace. Segment time for analysis was 1s.
Corresponding low values occur around 10s, 50-55s, 75s, while aligned raises appear around
20s and 45s. Statistical tests in Appendix Table ﬁ and confirm the visual trend, where
peaks in joy trace often coincide with rises in the orange intensity curve. A significant, moderate
correlation between joy and intensity is evident (r = 0.351, p = 0.0134), visualised in Figure §.5,

47



aligning with the pattern for these curves. Pitch shows no significant correlation (r = 0.188. p =
0.1965) and is weaker than that with intensity, which is consistent with the figure. Table in
Appendix further suggests a moderate shift toward higher intensity when Hume labels joy with
t = 2.718 for the top-30% joy frames. Therefore, t-tests reveals that the highest-joy segments
are associated with higher intensity than the remaining segments of the clip.

The same clip with fixed time-segments for vocal analysis using 2 second frames yielded
weaker correlation for pitch (r = 0.078, p = 0.6103), but higher for intensity (r = 0.329, p =

0.0272), listed in appendix Table [7.7.
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Figure 4.6: Pitch and HNR vs. Hume Anger for single negative clip.

Anger correlation with pitch and HNR is presented for one negative recording in Figure @,
vocal features segmented into 1.25s windows. The vocal features show a similar pattern as the
emotion probability in certain time segments, where both pitch and HNR have relatively aligned
nitude and direction. Correlation values and t-statistics is listed in Appendix Table

mag
7.1@1, no significant correlation is found for either feature.
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Figure 4.7: Pitch and HNR vs. Hume Sadness for single negative clip.

The opposing pattern for sadness shown in prior results, see Table , are demonstrated

in Figure with 2s segments. Clear fluctuations in magnitude where the Hume labelled

emotion have adverse direction. Low sadness (dashed navy trace) occurs in time frames where
both acoustic markers tend to raise (e.g. 5s, 20s, 45s, 60s, 90s). Reversed pattern with
high sadness segments are resembled as well (e.g. 45s, 70s, 80s). Analysis data is listed
in Appendix Table ﬁl and [7.12, sadness-pitch showed a negative moderate correlation (r =
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-0.333, p = 0.072), yet unsignificant. These table includes differences when segmenting at 2s
compared to 1s. T-statistic in pitch shifts for high-sadness showed significance (r = -2.203, p
= 0.036), implying pitch was low in high-sadness segments. These statistics endorse the visual
interpretation with negative correlation coefficients for both pitch and HNR even if statistical
significance is absent.

4.2.8 Conclusion RQ1 Data Analysis

The results revealed only weak to moderate correlations for the analysis between individual
vocal features and how Hume AI predicted emotions, where intensity and pitch showed most
patterns consistently. The custom vocal categorization method did not function well in this
context and resulted in very uniform results. This method was built on a basic group of vocal
features which may overlooked important indicators for certain emotions. ANOVA tests found
no significant differences in vocal features across Al-labelled emotions. However, examining
pitch and intensity fluctuations over time segments in individual clips gave more promising
results. This implies that dynamic changes in vocal features can offer more insights than static
averages when analysing conversational, yet spontaneous speech during interviews.

4.3 Data Analysis for RQ2: Text and Speech Based Emo-
tion Recognition

Research Question 2 explores the degree to which two modalities for Al-based emotion recog-
nition systems - speech-based (Hume AI) and text-based (NLP Cloud) - agree or diverge when
labelling emotional expressions in semi-structured interviews. We examine five target emotions
(anger, joy, sadness, fear, surprise) across the full dataset, as well as positive and negative
interviews separately. To acquire a detailed picture of how the models align, we compare their
average emotion scores, measure Pearson correlations and paired t-tests with Cohen’s d. This
multimethod approach supports a comprehensive understanding of how the two modalities re-
sponds to the same emotional input, to find mutual strengths and diverse tendencies in how
they classify emotions.

4.3.1 Comparative Overview of Model Outputs

As presented in Table @, Table @, and Table @ ( Data Collection), the mean emotion
scores and standard deviations differ between the two models across the full dataset, including
patterns within positive and negative interviews.

Figure visualises these differences for positive and negatives recordings separately. As
presented, anger in positive interviews was detected as significantly higher levels by Hume
compared to NLP, that rated anger near zero. For the negative interviews, the rating was more
aligned where NLP rated anger slightly higher. Joy is rates substantially high by NLP in the
positive interviews, compared to both other emotions and Hume’s probability. In contrast,
Hume rates joy higher than NLP for negative recordings. Sadness and fear are both rated
higher by Hume than NLP in positive contexts, while NLP rates sadness higher in negative
contexts where fear has more aligned scoring by the systems. Surprise was detected at similar,
low levels by both models for both sentiment categories. Highest contrast for surprise is found
in positive interviews where NLP rated it slightly higher.

The differences in the average emotion scoring are presented further in Figure @ Positive
values indicate that Hume AI assigned higher scores for respective emotions, while negative
values imply higher scores from NLP Cloud. As explained for Figure Y.§, the most evident
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Figure 4.8: Average emotion score for Hume Al and NLP Cloud, seperated by positive and
negative recordnigs.

difference was shown for joy in both sentiment contexts, where NLP rates it significantly higher
in positive settings and Hume higher in negative settings. Differences for sadness and surprise
were insignificant in negative interviews, aligned with surprise in positive interviews. In Figure

, the divergence in rating of fear in negative contexts is obvious where NLP rated the emotion
more frequent.

Average Difference: Hume vs NLP per Emotion (Positive) Average Difference: Hume vs NLP per Emotion (Negative)

Mean(Hume - NLP)
Mean(Hume - NLP)

-0.4

anger joy sadness fear surprise anger joy sadness fear surprise

(a) Positive recordings. (b) Negative recordings.

Figure 4.9: Average difference in emotions scores between Hume and NLP.
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4.3.2 Statistical Analysis

Correlation Analysis

To evaluate how text-based (NLP Cloud) and speech-based (Hume AI) emotion recognition
aligns, Pearson correlation coefficients (r) were calculated for each emotion across all interview
recordings. Table M includes the full dataset (positive and negative recordings), presenting
the correlation values as well as corresponding p-values to examine the statistical significance.

All recordings

Emotion Pearson r p-value Significant

Anger 0.466 0.007  Yes
Joy 0.521 0.002 Yes
Sadness 0.167 0.362 No
Fear 0.171 0.348 No
Surprise 0.197 0.281 No

Table 4.16: Pearson Correlations Between NLP and Hume Emotion Scores (Full dataset)

This data demonstrates a reasonable positive correlation for Anger(r = 0.466, p=0.007)
and Joy (r=0.521, p=0.0022), implying that these emotions are relatively consistent identified
throughout the Al systems on the full dataset. The p-values (p<0.05) show a statistical sig-
nificance and highlights a relevant relationship in how Anger and Joy are detected through
different processes. Sadness, Fear, and Surprise show contrasted results with weak correlations
(r<0.20) where the p-values indicate no significancy with low agreement between the AI mod-
els for these emotions when analysing the full dataset. Overall, some alignment for the more
distinct emotions as Anger and Joy are declared through the correlation analysis, but some
difficulties with consistent agreement are prominent for more nuances emotions as Sadness,
Fear, and Surprise.

Positive Recordings

Emotion Pearson r p-value Significant

Anger 0.160 0.568 No
Joy 0.682 0.005 Yes
Sadness 0.546 0.035 Yes
Fear 0.098 0.729 No
Surprise -0.050 0.860 No

Table 4.17: Pearson Correlations Between NLP and Hume Emotion Scores (Positive)

Table presents the same data as Table , but for positive recordings separately. As
for the full dataset, Joy shows a significant correlation (r = 0.682, p = 0.005) between the
model’s detection. In contrast, Anger has a lower correlation (r = 0.160, p = 0.568) in positive
contexts and Sadness presents a significant correlation (r = 0.549, 0.035) distinct from the full
dataset. Fear and Surprise has even lower correlations for positive recordings than the dataset
combined, with p-values close to 1.
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Negative Recordings

Emotion Pearson r p-value Significant

Anger 0.260 0.313 No
Joy 0.556 0.020 Yes
Sadness 0.028 0.914 No
Fear 0.270 0.294 No
Surprise 0.209 0.422 No

Table 4.18: Pearson Correlations Between NLP and Hume Emotion Scores (Negative)

Table summerizes the correlation coefficients for the negative recordings. Consistent
with the full dataset and positive subset, Joy again demonstrated a significant correlation
in negative contexts (r = 0.556, p = 0.020). All other emotions failed to reach significance,
with values that markedly diverged from their corresponding values in the positive recordings:
Sadness resulted r = 0.028 (p = 0.914) versus r = 0.546 (p = 0.035) for positives, and Fear
showed r = 0.270 (p = 0.294) compared to r = 0.098 (p = 0.729) in the positive context.

Paired t-Tests and Effect Sizes

To further explore alignment and differences between speech-based (Hume Al) and text-based
(NLP Cloud) emotion recognition, paired t-tests and Cohen’s d were conducted. Table §.19
shows the t-statistics, p-values, and Cohen’s d for each emotion across the full dataset. Positive
t-values implies that Hume rated that emotion more frequent than NLP, negative t-values
suggest the opposite.

Full Dataset

Emotion t-statistic p-value Significant Cohen’s d

Anger 1.717 0.096 No 0.303
Joy -1.726 0.094 No -0.305
Sadness -0.548 0.588 No -0.097
Fear 3.341 0.002 Yes 0.591
Surprise -0.657 0.516 No -0.116

Table 4.19: t-statistics, p-value with significance, and Cohen’s d for all clips.

Across all interviews, only Fear had statistically significant difference between the Al-models
(t = 3.341, p = 0.0022), and had a medium effect size (Cohen’s d = 0.591). Hume Al rated
fear consistently higher than NLP Cloud, suggesting a systematic modality difference for this
emotion. Although Anger, Joy, Sadness, and Surprise had some mean-score differences, none
reached statistical significance (all p>0.05) and their effect sizes were small (|d| < 0.03). Apart
from Fear, the two models demonstrated close agreement in recognizing these emotional ex-
pressions.
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Positive Recordings

Emotion t-statistic p-value Significant Cohen’s d

Anger 10.903 0 Yes 2.815
Joy -11.665 0 Yes -3.012
Sadness 6.177 0 Yes 1.595
Fear 5.125 0 Yes 1.323
Surprise -1.723 0.107 No -0.445

Table 4.20: t-statistics, p-value with significance, and Cohen’s d for positive interviews.

Table demonstrates t-tests and Cohen’s d for positive oriented interviews, where all
emotions except for surprise (t = -1.723, p = 0.107, d = -0.445) shows significant differences (p
< 0.001) with certainly large effect sizes. Negative T-value and Cohen’s d for Joy (t = -11.665,
d = -3.012) indicates that NLP have the aspects of overestimating this emotion compared to
Hume with large effect sizes, where Hume in contrast tends to overestimate Anger (t = 10.903,
d = 2.815) in positive contexts. Hume rates Sadness and Fear more prominent than NLP, and
Surprise remain inconsistent as previous results with no significant difference (t = -1.723, p =
0.107).

Negative Recordings

Emotion t-statistic p-value Significant Cohen’s d

Anger -1.702 0.108 No -0.413
Joy 3.720 0.002  Yes 0.902
Sadness -3.796 0.002  Yes -0.921
Fear 0.536 0.599 No 0.130
Surprise 1.311 0.208 No 0.318

Table 4.21: t-statistics, p-value with significance, and Cohen’s d for negative interviews.

Table presents conducted t-tests and Cohen’s d in negative interviews, with significant
differences for Joy (t = 3.720, p = 0.002), where Hume rates it significantly higher than NLP.
In contrast, NLP has clear higher scoring for Sadness with large effect size (t = -3.796, d =
-0.921). However, the effect sizes are not as big as for the positive recordings. For example, the
effect sizes for Joy (t = 0.902) are lower than Joy in positive contexts (t = -3.012) where NLP
overestimated the emotion compared to Hume. Anger has a moderate difference, even if it is
not statistically significant. No notable differences are detected for either Fear or Surprise. This
implies that the Al systems strongly disagrees on Joy and Sadness detection in the negative
contexts of the dataset.

Conclusion Statistical Analysis

Comparison of speech-based (Hume AI) and text-based (NLP Cloud) with statistical analy-
sis demonstrates correlation particularly for clear expressed emotions as Anger and Joy when
analysing the full dataset. However, anger shows no correlation between the models for either
positive or negative recordings when separated. Joy shows a significant correlation through-
out all sentiment contexts, where t-tests confirmed that NLP had higher predictions for joy
in positive contexts and Hume in negative. Emotions that are more subtle like Sadness, Fear,
and Surprise, revealed low correlations for all sentiment contexts except positive that showed a
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strong correlation for sadness, indicating modality-specific distinctions. Paired t-tests strength-
ened this observation regarding the full dataset and negative subset, pointing out Fear as the
only emotion with statistically significant divergence in the full dataset where speech-based
analysis assigned higher scores consistently. However, negative recordings showed significant
difference for joy and sadness, while positively oriented clips showed significant difference for
all emotions except surprise.

Conclusion Sentiment-Based Analysis

In conclusion, Hume AI and NLP Cloud show moderate to strong agreement on anger (r =
0.47) and joy (r = 0.52) across the full dataset, but weak correlations on sadness, fear, and
surprise. Paired t-tests showed that fear is the single emotion that exhibits a significant mean
difference across the full interview set (Hume > NLP, d = 0.59), while joy and anger showed
modality divergencies in positive and negative subsets where NLP overestimated joy in positive
interviews (d = 3.01) and Hume overestimated anger (d = 2.82). These results suggest that text
and speech modalities agree on certain emotions particularly when considering the full dataset.
However, divergencies occur for sentiment-specific analyses, especially for positive interviews.

4.3.3 Conclusion of RQ2 Data Analysis

The results of this research question show that even if Hume AI and NLP Cloud partially
aligns in detecting emotions, certainly for clearly expressed emotions such as Anger and Joy,
they diverge significantly in their predictions of more nuanced emotions such as Fear, Sadness,
and Surprise. Statistical tests confirmed a significant difference for Fear. Sentiment-based
analysis showed that emotional context have an impact on the results, when analysing five
basic emotions, where positive scenarios had a larger model divergence. As discussed above,
the interview setting and overall data collection may have different impacts on the results. Still,
the findings highlights how speech- and text-based models are complementary, each with their
own strenghts to capture different aspects of emotion expression, and indicate that relying on
a single modality could have limitations for comprehensive emotion detection in speech.

4.4 Data Analysis for RQ3: Al and self-assessed emotion
labels

The third research question explores how Al-generated emotion labels - from both speech-based
(Hume AI) and text-based (NLP Cloud) — aligns with participants’ own emotion ratings, to
evaluate the agreement and divergence in different interview sentiments (positive and negative).
This section includes average emotion scores from self-reports, Hume AI, and NLP Cloud
across all recordings and for each sentiment category. Linear agreements are quantified with
Pearson correlations and mean-level differences are analysed with paired t-tests and Cohen’s
d for assess effect sizes. This approach allows to see the overall alignment between Al-models
and participants own assessment as well as how it depends on the sentiment context.

4.4.1 Model Emotion Score and Self-Reports Comparison
An initial overview is summarised in Table @, Table @, and Table @ ( Data Collection),

with average emotion scores across all 30 interview recordings for each emotion category (anger,
joy, sadness, fear, surprise). The table presents mean values and standard deviation for self-
resported scores aside both Al-systems.Table §.7 includes the same values for positive recordings
and Table @ presents the data from negative recordings.
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These differences are visualized in Figure , illustrating a bar chart that compares the
average emotion scores defined by Hume AI, NLP Cloud, and participants self-assessment
seperated by positive and negative oriented interviews.

Sentiment: Positive Sentiment: Negative
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Figure 4.10: Comparison of emotional labels for Hume, NLP, and self-assessed.

For the positive recordings, Joy consistently had higher self-reported scores than other
emotions. NLP rates Joy higher than the participants while Hume rates it lower. In contrast,
Joy was markedly rated higher by Hume in negative contexts than NLP and self-reporting
which rated the emotion equally. The negative related emotions (Anger, Sadness, Fear) were
assessed at lower levels by participants in the positive interviews. Self-assessed scores generally
matched Hume’s higher detection of Sadness, Fear and Surprise than NLP’s minor predictions.
Anger had higher rating by Hume than both self-reports and NLP in positive contexts. Surprise
had similar average score across all sources, slightly lower detection rate by Hume.

For negative recordings, Anger had similar rating across all sources, with slightly higher
rating by NLP. Joy has markedly higher average score by Hume compared to the other sources,
while the speech-model rates Sadness lower than the text-model and participants. Fear and
surprise had aligned rating by all sources, with a similar pattern where both emotions are rated
slightly higher by the participants, closely followed by Hume and lowest rating by NLP.

This comparison suggests that emotional ranking are more aligned in for the negative record-
ings, where Joy is the emotion most distinct in the rating by Hume. The positive oriented
interviews have more varying results between the sources, Joy are significanly rated higher by
NLP while the text-based model rates Anger close to zero compared to Hume that rates this
emotion higher than all other emotions except for Joy.

The sentiment-based comparison clearly presents that emotional expression and self-awareness
have a signficant variance between modalities and emotional contexts. Explicit emotions artic-
ulated in words are closely aligned between self-assessed rating and text-based analysis. While
implicit or suble emotions expressed through vocal tone have a notable divergence.

4.4.2 Correlation and Visual Analysis

To evaluate the alignment between Al-generated emotion scores and participants self-reported
emotions, Pearson correlation analyses were conducted across the five emotion categories for
both speech-based (Hume AI) and text-based (NLP Cloud) compared to self-reporting. With
these measurements the relationship’s strength and direction and the statistical significance
can be reviewed.
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Hume AI vs Self-Reported Emotions

All Hume

Emotion Pearson’sr p-value Significant

Anger 0,359 0,043  Yes
Joy 0,334 0,062 No
Sadness 0,050 0,784 No
Fear —0,007 0,969 No
Surprise 0,088 0,631 No

Table 4.22: Pearson’s r, p-values, and significance for all Hume recordings.

The correlation results for Hume AI predictions on all recordings in the dataset is demon-
strated in Table §.22, and indicate generally weak correlations across the majority of emotions.
Anger is the only emotion showing a statistic significant correlation (r = 0.359, p = 0.043),
which indicates a moderate alignment between Hume AI’s speech based emotion detection and
participants own perception for this emotion. Joy shows a moderate correlation but without
statistical significance (r = 0.334, p = 0.062), other emotions, such as Fear (r = 0.007, p =
0.969), presents no relevant correlation.

(a) Positive Recordings (Hume) (b) Negative Recordings (Hume)
Emotion r p Sign. Emotion r p Sign.
Anger 0.404 0.136 No Anger -0.105 0.690 No
Joy 0.401 0.138 No Joy 0.127 0.627 No
Sadness 0.320 0.244 No Sadness -0.146  0.576 No
Fear -0.027 0.924 No Fear -0.036 0.891 No
Surprise 0.091 0.748 No Surprise  —0.143 0.585 No

Table 4.23: Pearson’s r, p-values, and significance for Hume Al vs. self (positive and negative).

Table presents correlation coefficients for positive recordings with no significant agree-
ment occurs between Hume predictions and self-reported emotions. Anger, sadness, and sadness
show moderate correlations (r = 0.320-0.404) with no statistical significance (p = 0.136-0.244).
Weak correlation appears for both fear and surprise with high p-values suggesting no convincing
evidence for these correlations.

Negatively oriented interviews, Table show similar results as for positive interviews
where no correlations of significance are found (r = -0.146-0.127, p = 0.576-0.0.891). Four
out of five emotion correlations are negative while joy has a weak positive relationship. Each
correlation is considered weak without statistical significance, implying that Hume predicted
emotions distinct from participants own evaluation.
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NLP Cloud vs Self-Reported Emotions

All NLP

Emotion Pearson’sr p-value Significant

Anger 0,739 0,000 Yes
Joy 0,863 0,000 Yes
Sadness 0,710 0,000 Yes
Fear 0,669 0,000 Yes
Surprise 0,092 0,616 No

Table 4.24: Pearson’s r, p-values, and significance for all NLP recordings.

Table presents correlation coefficients between self-reported and NLP-predicted emotions
for the full dataset. When analysing the full dataset, NLP Cloud demonstrated strong and
statistically significant correlations with self-reporting for four of five emotions. Joy showed
the strongest correlation (r = 0.863, p < 0.001), followed by Anger (r = 0.739, p < 0.001) and
Sadness (r = 0.710, p < 0.001). Fear had a moderately strong correlation with high statistical
significance (r = 0.669, p < 0.001). Surprise was the single emotion showing weak correlation
with no statistical significance (r = 0.092, p = 616).

(a) Positive Recordings (NLP) (b) Negative Recordings (NLP)
Emotion r p Sign. Emotion r p Sign.
Anger -0.199 0477 No Anger 0.286 0.266 No
Joy 0.622 0.013 Yes Joy 0.366 0.149 No
Sadness 0.363 0.183 No Sadness 0.429 0.086 No
Fear 0.527 0.043 Yes Fear 0.599 0.011 Yes
Surprise 0.011 0.969 No Surprise  —0.146  0.575 No

Table 4.25: Pearson’s r, p-values, and significance for NLP Cloud vs. self (positive and negative)

Table presents correlation data between self-reports and NLP Cloud for positive in-
terviews, where lower alignments between self-reports and NLP is found compared to the full
dataset. Only correlations for Joy (r = 0.622, p = 0.013) and Fear (r = 0.527, p = 0.043) are
statistically significant. Sadness had a moderate correlation without statistical significance,
Anger and Surprise presented weak correlations.

Correlation coefficients for negative interviews are presented in Table , with similar
results as for the positive interviews with weaker correlations compared to the full dataset. The
single strong correlation with statistical significance is Fear (r = 0.599, p = 0.011). Moderate
correlation is found for Joy (r = 0.366 p = 0.149) and Sadness (r = 0.429, p = 0.086), both
with no statistical significance. As for the positive recordings, both Anger and Surprise had
weak correlations between NLP and self-reporting.

Visual Correlation

Figure illustrates the correlation between self-reported Anger scores and Al-labelled pre-
dictions for positive oriented interviews, while Figure @.17 illustrates the correlated data for
negative interviews. As shown, Hume shows a moderate positive correlation with no statistical
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significance (r = 0.40, p = 0.136) where the data points have some spreading around the trend

line. NLP Cloud shows a weaker correlation with self-reports for ange
than Hume in positive recordings, as demonstrated in the Figure

4.11]

data points are spread out vertically in line with the 0.0 axis.
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Figure 4.11: Scatter plot, Hume, NLP vs. Self for Anger.

The correlation coefficients remain low in Figure , where NLP presents a moderate
positive correlation (r = 0.29, p = 0.266) with self-assessed anger in negative contexts, while
the relationship with Hume is weaker (r = -0.10, p = 0.690) than in the positive interviews. The
dispersed data points around the trend line visualises the divergence between the Al-systems
and participants own judgement.
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Figure 4.12: Scatter plot, Hume, NLP vs. Self for Anger.

Correlations for Joy is presented further in Figure for positive recordings. Both Hume
and NLP show a moderate to strong correlation with self-reported joy, NLP with the strongest

correlation with statistical significance (r = 0.62, p = 0.013).

This relationship is clearly

presented with the data points being relatively close to the trend line for NLP, while the Hume
diagram has more dispersed data points.
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Figure 4.13: Scatter plot, Hume, NLP vs. Self for Joy.

Agreement between self-reported and Al-predicted joy is demonstrated for negative inter-
views in Figure @ The trend where NLP has a higher correlation (r = 0.37, p = 0.149)
remain, however the moderate relationship has no statistical significance. Hume shows a weak
correlation, in contrast with the positive oriented interviews. Data points are more widespread
for both Hume and NLP correlation with self-reported joy, suggesting varying rating of this
emotion in negative contexts.
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Figure 4.14: Scatter plot, Hume, NLP vs. Self for Joy.

4.4.3 Statistical Analysis and Effect Sizes

To explore if Al-generated emotion scores has a significant difference from self-reported emo-
tions, paired t-tests were conducted for both Hume AI and NLP Cloud across each emotion for
each sentiment. To evaluate the effect size of these differences, Cohen’s d were calculated.

Hume vs Self-Reports

Table presents the results on paired t-tests with Cohen’s d to compare Hume AI’s speech-
based emotion scores to participants reports across the full dataset. As shown, Hume Al ratings
on anger are higher than self-reports (t = 2.399, p = 0.023, d = 0.424), suggesting a moderate
tendency for Hume overestimating anger compared to participants own perception. In contrast,
Hume underestimate Surprise relatively to self-reports (t = -2.109, p = 0.043, t = -0.373). No
significant differences are found for sadness, fear, and surprise (p > 0.05, |d| < 0.20).
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All Recodings

Emotion t-statistic p-value Significant Cohen’s d

Anger 2.399 0.023 Yes 0.424
Joy -0.271 0.788 No -0.048
Sadness —1.069 0.293 No -0.189
Fear 1.052 0.301 No 0.186
Surprise -2.109 0.043  Yes —0.373

Table 4.26: Hume Al vs. Self—All Recordings (paired t-test & Cohen’s d)

Table seperates these comparisons by sentiment. In positive interviews, four of five
emotion comparisons show significant differences. Hume tends to remarkably overestimate
anger (t = 8.776, p < 0.001, d = 2.266) and underestimate joy (t = -5.112, p < 0.001, d =
-1.320), and assigning notable higher scores for sadness and fear compared to participants own
evaluation. Surprise is the single emotion that remains unsignificant. In negative interviews,
significant differences appears for joy (t = 3.878, p = 0.001, d = 0.941) where Hume predicts
higher levels than self-reported scores, and for sadness (t = -2.890, p = 0.013, d = -0.677) that
is rated higher by participants than Hume. Other emotions show no reliable difference.

(a) Positive Recordings (b) Negative Recordings
Emotion t p Sign. d Emotion t p Sign. d
Anger 8.776 0.000 Yes 2.266 Anger -0.517 0.612 No -0.125
Joy -5.112  0.000 Yes —-1.320 Joy 3.878 0.001 Yes 0.941
Sadness 2.451 0.028 Yes 0.633 Sadness -2.790 0.013 Yes -0.677
Fear 2.463 0.027 Yes 0.636 Fear —0.454 0.656 No -0.110
Surprise  —1.855 0.085 No —0.479 Surprise  —1.033 0.317 No —0.250

Table 4.27: Paired t-test and Cohen’s d for Hume Al vs. Self in positive and negative interviews.

These results suggests that Hume AI’s speech-based assessments only have weak agreements
with participant’s self-reports, with varying alignment depending on emotion and sentiment
context. In positive interviews, the model remarkably over- or underestimates anger and joy
compared to self-reported emotions, while in negative interviews the only significant differences
occur for joy and sadness.

NLP Cloud vs Self-Reports

Paired t-tests with Cohen’s d for comparison of NLP Cloud’s text-based emotion scores and
participants’ self-reports for all recordings are presented in Table §.2§8. Significant differences
are found for joy, where NLP rates it higher than self-reports (t = 2.331, p = 0.026, d = 0.412).
In contrast, NLP tends to underestimate fear comparing to self-reports (t = -3.496, p = 0.001,
d = 0.618). Anger, sadness, and surprise show now significant difference (p > 0.05, |d| < 0.20).
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All Recodings

Emotion t-statistic p-value Significant Cohen’s d

Anger -0.373 0.711 No —0.066
Joy 2.331 0.026 Yes 0.412
Sadness —0.525 0.603 No -0.093
Fear —-3.496 0.001 Yes —0.618
Surprise -1.011 0.320 No -0.179

Table 4.28: Paired t-tests and Cohen’s d for NLP Cloud vs. Self. All Recordings

Table seperates the comparisons by sentiment. In positive interviews, NLP rates anger
at significantly lower levels than participants (t = -4.853, p < 0.001, d = -1.253), while rating
joy higher than self-reports (t = 6.066, p < 0.001, d = 1.566). Both sadness and fear have
a significant difference where NLP tends to underestimate these emotions compared to self-
reports. Surprise remains without significance. In negative oriented recordings, no significant
difference between NLP and self-reports are found (p > 0.05, |d| < 0.389), suggesting closer
alignment during negative contexts.

(a) Positive Recordings (b) Negative Recordings
Emotion t p Sign. d Emotion t p Sign. d
Anger -4.853 0.000 Yes -1.253 Anger 1.335 0.200 No 0.324
Joy 6.066 0.000 Yes 1.566 Joy -0.578 0.571 No -0.140
Sadness -2.852 0.013 Yes —0.736 Sadness 1.073 0.299 No 0.260
Fear -4.603 0.000 Yes —-1.188 Fear -1.149 0.267 No -0.279
Surprise  —0.075 0.941 No -0.019 Surprise  —1.604 0.128 No —0.389

Table 4.29: Paired t-test and Cohen’s d for NLP Cloud vs. Self in positive and negative inter-
views.

Overall, these results implies that NLP Cloud have higher agreement with self-reports in
negative contexts, but in positive interviews notable divergencies are found for certain emotions,
most appearing for anger, joy and fear.

4.4.4 Conclusion of RQ3 Data Analysis

The result for the full dataset shows that Hume AI only has two small significant divergencies
from self-reports, where anger is overestimated (d = 0.42) and surprise underestimated (d =
-0.37) compared to ratings by the participants, while all other emotions show no significance in
t-tests and weak correlations. When separated by sentiment, Hume tends to overestimate anger
and underestimate joy relatively to self-reports in positive contexts, in negative interviews it
diverges on joy and sadness. In contrast, NLP Cloud are closely aligned with self-reports in
negative contexts, with no significant differences, but in positive interviews NLP remarkedly
underestimates anger (d = -1.25), rates fear at lower levels, and joy at higher levels compared
to self-reports. compared to self-reports. Correlation analyses strengthen these patterns, where
NLP correlations with self-assessed scores are strong for anger, joy, sadness, and fear in the
full set, and Hume only shows a moderate correlation for anger and weaker correlations for
other emotions. However, the correlations are not as strong when separating the interviews by
sentiment. Overall, text-based emotion detection with NLP Cloud has higher agreement with
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participants’ self-assessments, especially in negative interviews, while speech-based detection
with Hume have more variations between positive and negative contexts. These results shows
that each modality captures distinct features when comparing with human-labelled rating of
their own emotions, and the alignment is fluctuating depending on the interview sentiment.
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Discussion

5.1 Result Discussion RQ1

For the first research question, this thesis investigated how an AI model for speech recognition
compare to existing research on vocal markers. More specifically, the goal is to assess whether
the Al models align with the findings of the Swedish research on vocal markers done by Ekberg
et al. (2023).

The attempts to categorise emotions based the results on this Swedish study cannot be
directly evaluated in terms of how accurate the function yielded emotion labels. Even if the
standardised function had better recall against Hume, the divergences between the scores were
minimal. The rule-based version got higher recall in addition of feature-based adjusting com-
pared to Hume, which is not a ground truth, still beneficial for relative comparison. The
improvement is aligned to prior research (Banse & Scherer, 1996; Ekberg et al., 2023), min-
imising the extreme values for joy according to the wide acoustic markers while increasing the
weight of pitch, which is stated to be the most prominent feature perceptually. Restricting
anger to be required two of its studied characterises lead to slightly fewer recordings being top
labelled as anger, which was added by the reason to separate anger from happiness. The final
version presented some alignment between the top emotions, negative recordings yielded higher
correlation where both models rated anger highest for six clips and sadness for two clips. More
confusion occurred for the positive recordings. The interview setting is likely a contributor to
this, where positive oriented questions can be answered with the same tone as negative evoked
answers. Fear and surprise were rarely labelled by both methods, Hume distribution is pre-
sented in more detail for RQ2. However, even if the results yielded higher recall against Hume,
it cannot be benchmarked that these alternations resulted in exactly the emotions that were
expressed — a complex question to answer no matter what it is compared to, due to the na-
ture of abstract perception of expressed emotional state, both internally and externally. When
formulating the rule-based categorisation function, subjective opinions have an impact about
fear and surprise rarely being expressed in the interviews overall, by the reason that the in-
terviews were not designed to evoke these emotions which is complicated to recall in interview
circumstances, especially for surprise.

Comparison of vocal features against Hume’s emotions probability and our categorisation
labelling demonstrates that the methods label emotions based on different data. Only sadness
shows a similar vocal pattern between the sources, both negatively correlated with pitch and
HNR, for other features, not as strong correlation similarities occur. No other emotion shows
similarities, presumably by the reason that Hume has a much more advanced approach to recog-
nising emotions than only using a few vocal features as indicators, as explained in Theoretical
Framework P.5. The fact that average values for a whole recording was used for these analyses,
are most likely impacting the results due to low-expressed vs high-expressed segments even out.
The subjective possible impact is a clear limitation as well as utilizing the Swedish research
as a foundation for this categorisation since it is based on a small, acted dataset whereas this
study analyses semi-structured interviews with spontaneous speech in conversational interview
format. Limitations for the categorisation function also involves alternations that, even if mo-
tivated by prior research, might not yielding fully accurate results. Therefore, the remaining
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data analysis include Hume’s probability and vocal features, not categorised manually.

To answer the research question, Time-to-Time analysis reveal what occurred for sadness
in the comparison between vocal features and both emotion categorisation methods. Highest
correlation values together with shifts for high-emotion occurrence with certain features re-
sulted in sadness being most prominent predicted when pitch and HNR was lower, but also
when intensity decreased. All three relationships are aligned to the Swedish research, where
these acoustic markers have lower mean than other emotions. Fear was the second emotion
with higher correlations, for example being predicted when pitch and HNR was raised, also
according to the utilized research results. Joy had the highest intensity shift, that is stated in
the research. However, anger had lower results for intensity which contrasts with expectations.
When interpreting these results, it is important to acknowledge that the Swedish research do
not specify how strongly the emotions are expressed, it is hard to define if anger is perceived
as screaming or as a negative tone. Again, the nature of emotions is complex, and it is not
possible to compose if the results are good or bad, which was not the purpose of this study.
Conducting time segmented analyses generated additional insights that reduced the limitation
with using mean values from the recordings, revealed by observing feature shifts.

Despite that less than half of the feature-emotion group was significant, with most corre-
lations being weak, certain patterns aligned with theoretical expectations was disclosed. The
case examples provide a visualisation on both how certain vocal features align with Hume-
predicted emotions, presenting similar patterns as prior research. It also shows how the fixed
time-segments can have a negative impact on the correlation values, since Hume have clip vary-
ing time frames, the segments are not fully aligned. While correlations between Al-labelling
and vocal markers are generally weak to moderate, it is important to acknowledge that Hume
emotion scores should not be perceived as perfect estimates of true emotional states, even if it
probably results in reasonable predictions. These analysed recordings consist of spontaneous
and conversational speech which likely do not involve as strong emotional expressions as acted
datasets, with tendency of more subtle and reduced level of vocal features. The simplicity
regarding the number of applied vocal markers in contrast to the emotion-trained AI model
reaching beyond the use of single acoustic features is a certain reason that this study should be
interpreted as explanatory and not to benchmark the general efficiency of emotion recognition
in Swedish speech.

The wide acoustic spread for certain emotions, as anger and joy, presented in both (Banse &
Scherer, 1996; Ekberg et al., 2023) and was prominent when adjusting the rule-based emotion
categorisation where alternations had to be included to separate them from each other. This
imply that vocal-marker theory can be limited in conversational context and the intention of
the speaker, such as sarcasm and genuine versus polite emotions.

Certain vocal patterns do in fact recognize expressed emotions, as we as humans can in-
terpret certain emotions in others through their speech, algorithms and technology can do the
same, at least to some extent. Even if some Hume-labelled emotions align with research on
acoustic markers, more than these features are utilized to recognise emotions with AI. The fact
that some alignment arises between the Swedish research and Hume Al, suggests that the lan-
guage does not necessarily have an overly negative impact, yet our results are not comprehensive
enough to confirm this.

5.2 Result Discussion RQ2

For the second research question in this thesis, the aim was to investigate the similarities and
differences between the two AI models Hume AI, a speech-based model, and NLP Cloud, a
text-based model. This was measured when labelling five different emotions in semi-structured
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interviews.

The decision to shift from the initial sentiment analysis model to the text generation end-
point provided necessary control to target the five emotion categories of this study, explained in
. The generative model relies on prompt phrasing, this may have introduced variability in
the results, not only by the manual prompting but also because of utilizing a zero-shot prompt
without thorough testing or evaluation of the outputs. Future studies may benefit from a more
systematic testing of prompts and the stability through different analyses on the same input.

Using both descriptive statistics and visual analyses to calculate the differences, the system
overall seemed to show some levels of agreement for certain emotions. In figure .8, the results of
the entire dataset divided between the positive and negative recordings were presented and the
results highlighted some key differences in the interpretation of the emotional content between
NLP Cloud and Hume AI. NLP Cloud appeared to better capture the contextual nuances, as
scores for the positive clips had higher scores for joy and surprise, while negative recordings had
a higher score for anger and sadness. Hume on the other hand, showed potentially misleading
results. A significantly higher emotion score for anger and a somewhat higher score for sadness
and fear in the positive recordings, while the score for joy appeared significantly higher for the
negative recordings. This may be due to some signals being misinterpreted when speaking of
both positive and negative topics. For example, some participants might have talked about
the negative topics in an ironic tone, with sarcasm, or expressed nervous laughter. This could
be hard for a speech-based model to differentiate and pick up on without the textual context.
Another possible explanation may be due to pitch variations, as earlier research found that
prosodic features like pitch are informative for arousal detection (Soleymani et al., 2017). Pitch
is one of the key features for emotion recognition in audio and it is possible participants of
the interviews might have spoken with a high pitch even if they were not using a very descrip-
tive language. Hume Al could have interpreted a high pitch as emotional intensity, possibly
explaining the high score of joy in the negative recordings and the high score of anger in the
positive recordings.

Joy being highly scored by NLP Cloud in the positive recordings indicates that joy may
have been easier identified in textual context than in speech-based emotion analysis, as the
textual context may have conveyed a more positive tone from the text than what appeared in
the voice. This is further backed up by earlier research stating specific words like “amazing”
holds more intensity for emotions than other words like “leaves” (Chauhan et al., 2024). The
participants in the interviews may have used very descriptive language when describing positive
experiences, which may be a reason for the high score for joy by NLP Cloud. In contrast, as
anger and fear appeared to have been more consistently captured by the speech-based emotion
detection in the positive clips, this possibly suggests that someone might sound angry or fearful
even though they may not be experiencing these emotions in the moment.

Based on the Pearson correlation analysis in table {.16, showing the association between
the text-based and speech-based emotion recognition models for all recordings, the strongest
alignments were shown for joy and anger. As no further strong correlations or statistically
significant p-values were found in the other emotions, several factors may account for this
result. For example, joy and anger are distinct emotions, while sadness, fear and surprise may
likely involve more subtle cues and contextual factors. These emotions being more complex
and seemingly more difficult to detect, may have contributed to the lower consistency across
the two models for these specific emotions. Research have found that acted speech involves a
stronger degree of intensity than spontaneous speech, which makes it more difficult to recognize
emotions in this format (Chakraborty et al., 2016). As spontaneous speech from interviews was
used in this study, it is possible the models failed to detect the low-intensity emotions to an
extent.

For the positive recordings only, there were two emotion showing significant correlations
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between the two models, joy and sadness, whereas for the negative recordings the only emotion
that showed a significant correlation was joy. These results suggests that joy is the easiest
emotion to detect for the models regardless of the context, and that anger, fear and surprise
may be too complex to detect, although there are several possible reasons as to why they
have low or inconsistent correlations in addition to the difficulties of emotion detection in
spontaneous speech. The way that the interviews are set up and the fact that the participants
of the interviews talk about situations and feelings they have lived through in the past, may
have resulted in emotions being expressed in a subdued way. Talking about a time where you
felt fear or surprise might not be translated as strongly when time has passed, as it would
in the moment when the emotions were felt. It is possible the interviewees did not feel or
express strong emotions when speaking about different situations, and as neutral emotions
have been found harder to detect according to earlier research (Cao et al., 2015), it is possible
some emotions have remained undetected or incorrectly detected. With this in mind, the lack
of correlations for more complex emotions suggest that the interview format may have been
insufficient to draw out more nuanced emotional responses. Alternatively, the Al models used
may have some limitations in detecting subtle emotions.

For the full dataset, paired t-tests showed no significant differences for the mean score of
the emotions across the dataset for all emotions except fear. Although the t-test indicated that
while the systems do not align on detecting patterns for fear, Hume Al consistently rates fear
higher than NLP Cloud. Possible explanations for this result may reflect the differences in how
emotions are conveyed and detected in the different models, whereas Hume Al possibly could
have captured the more subtle vocal indicators that might not have been as easily expressed or
detected in text.

T-test for the positively oriented interviews in comparison to the negative oriented interviews
revealed notable findings. For the positive interviews, significant differences between the models
were found for all emotions with the exception of surprise, while NLP on the other hand
overestimated joy significantly. This may be explained by the complexity of emotions and
emotional expression. In the positive interviews, the participants discussed joyful topics, and
while this may have been detected for the text-based emotion recognition, the voice could reveal
more subtle cues in the tone, rhythm and pitch. For the positive interviews, the participants
may have had a lower and more neutral tone and pitch than an actor acting out happiness,
which could be one explanation for this result, which also can be explained by earlier research
stating neutrality makes detection of emotions more difficult (Cao et al., 2015).

The T-tests for the negatively oriented interviews showed that significant differences were
only identified for joy and sadness, where Hume rated joy with a higher score, and NLP rated
sadness higher. This indicates a misalignment for the two models for the analyses made for
the negatively oriented interviews. A possible explanation for this is the participants of the
interviews using an overly positive tone of voice out of politeness due to the interview setting,
even if the content of the words may have been negative. This could explain why Hume Al
detected joy in interviews with a negative theme.

5.3 Result Discussion RQ3

For the third and final research question, the objective was to assess how the Al generated
emotion labels obtained through the speech- and text-based emotion recognition would compare
to the self-reported emotions provided by the interviewees.

In examining the alignment with the speech-based emotion labels from Hume Al and the
text-based emotion labels from NLP Cloud with the self-assessed emotion scores, insightful
findings revealed some levels of alignment dependent on both the model and emotion.
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Figure builds on figure %iseussed for RQ2. Presenting mean emotion scores for
Hume AI and NLP Cloud, figure also introduced the self-assessed emotion scores. Key
differences were found between the models in comparison to the scores obtained from the
interviewees, as NLP_Cloud rated joy much higher than both the other modalities. As earlier
discussed in section @, this could still be explained by the spontaneous interview format, as it
may not encourage expressively conveying emotions, leading to the model interpreting textual
language as joyful even though the tone may have been more neutral. Suprise presented almost
identical values for the self-assessed scores in comparison to NLP Cloud, although for all other
emotions (anger, sadness and fear) the participants of the interviews rated their emotions
almost an average between the two models, with the scores not being quite as high as Hume
Al and not as low as NLP Cloud. In the case of Hume Al estimating anger substantially
higher than NLP Cloud and somewhat higher than the interviewees themselves, there might
have been misinterpreted signs of anger coming from pitch and intensity during the interviews.
These results suggest that the only emotion detected somewhat similarly here compared to the
self-assessed scores was surprise, whereas the self-scores landed on a middle ground between the
two models for all other emotions in the positive oriented interviews. Higher ratings of anger by
NLP Cloud compared to the two other sources was likely due to the context of negative wording
in the negative interviews forwarding the emotions more than was both felt by the participants
and detected trough the voice. NLP Cloud scored substantially closer scores to the self-assessed
emotion scores for joy and sadness compared to Hume Al, suggesting the context of the words
matched the emotions in the interviews better which indicates that the text-based model might
have been better at capturing emotions from the vocal recordings. Hume may not have picked
up vocal cues in the same capacity, likely due to the low expressions and more neutral speech
during the interviews. This further reflects a limitation in emotion recognition from spontaneous
speech, which also has been highlighted in earlier research. Research done by Cao et al. (2015),
found even advanced ranking-based classifiers which had outperformed traditional models, to
struggle with neutrality in spontaneous speech (Cao et al., 2015). Further analysis for the
negative clips showed Hume Al rated the emotion joy extremely high in comparison to the
two other modalities. This further confirms what was earlier explained in the discussion for
RQ2 , that Hume AT may have incorrectly interpreted certain vocal cues as joy, for example
nervous laughter or sarcasm, which could be difficult for a speech-based Al to recognize.

Overall for the sentiment-based comparisons, the negative recordings showed a better align-
ment for all three modalities. For both the positive and negatively oriented recordings, the
two models performed better for some emotions as the text-based AI NLP Cloud seemingly
captured the context for each interview more consistently for some emotions than the speech-
based model and vice versa. This underscores the limitation of relying exclusively on either
speech-based or text-based emotion recognition, as the different models capture different emo-
tions with varying degrees of accuracy. Using both models in comparison to the self-assessed
scores gives a wider understanding of the performance for the text-based versus speech-based
emotion recognition model and their different strengths and weaknesses. This aligns with ear-
lier research which also have concluded that using more than one approach results in a better
performance than only relying on an individual source (Cao et al., 2015).

When examining the positive recordings and the negative recordings individually for the
correlation analysis for Hume AI, no significant correlations were found for any emotions,
although the positive recordings showed moderate positive trends for anger and joy. These
emotions did not reach any significant correlations, but moderate r-values suggests a possible
relationship that may be of interest to explore in the future with a lager dataset or different
methods, as the lack of statistically significant correlations indicated that the emotions captured
in the interviews did not align closely with those in Hume AI. For the correlation analyses for
NLP Cloud, surprise was poorly detected with low correlations, suggesting the model struggled
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with the interpretation of the emotion surprise, possibly as a consequence of the complexity of
the emotion and once again the nature of the spontaneous interview format.

While NLP Cloud showed stronger correlations with the self-reported emotions overall com-
pared to the Hume AI model, results showed that the model performed inconsistently across
the different contexts (negative and positive), suggesting that a more consistent recognition of
emotions may demand more modalities for better accuracy. These results also point to the fact
that surprise remains a complex emotion with more challenges to capture from the data used
in this study, although there are additional reasons to this challenge. In the self-evaluation
segment of the interviews, multiple participants expressed certain confusion regarding the as-
sessment of the emotion surprise. A large part of the interviews consisted of describing past
emotional experiences which may have reduced the intensity of surprise. Typically, surprise is
expressed as an immediate reaction to unexpected events and it’s unlikely that the interviewees
are able to genuinely experience the same amount of surprise felt in the original moment of the
memory. This provides a possible explanation for why both AI models overall detected low
levels of surprise, while an acted dataset possibly could have presented higher correlations for
this emotion. As stated in earlier research, acted speech is an amplification of emotions and
spontaneous speech may lack the level of intensity to be distinguished from different emotions
(Chakraborty et al., 2016).

The statistical analysis and effect sizes showed to be consistent with earlier findings, further
giving grounds to this discussion. The full dataset showed Hume to have a moderate tendency
for overestimation of the emotion anger in comparison to what the participants of the interviews
had reported themselves, which remains true for the positive recordings where anger was very
highly detected by Hume. As Hume also tends to underestimate surprise compared to the
self-assessed scores, it is further confirmed that surprise is a difficult and complex emotion to
detect. This validates conclusions from earlier research stating that neutrality is difficult for a
model to deal with (Cao et al., 2015). It is possible the neutrality of the speech often coming
across in a spontaneous interview format may have been one of the reasons as to why emotions
like surprise were detected at low levels. Hume AI may, as a speech-based emotion recognition
model, not be capable of detecting subtle emotions fully and appears to struggle without the
textual context as some vocal cues seems to have been misinterpreted. No significant differences
were found for NLP Cloud in the negative context, which suggests a closer alignment for NLP
Cloud and the self-assessed scores in the negative contexts. In the cases of where the alignment
for the models and self-assessed scores did not align as well, further explanations can be drawn
from earlier research stating sentiment do not inevitably display themselves in expressions or
behaviors (Soleymani et al., 2017). In many cases both Hume Al or NLP Cloud overestimated
or underestimated scores compared to the self-assessed values. This could likely be due to vocal
expressions not always aligning with the internal affective states, as sentiment is not always
fully articulated.

5.4 Method Discussion

The methodology to collect data through interviewing people with the intention to evoke emo-
tions to analyse the recorded data have limitations, even if beneficial to the purpose of the study
where real-world speech should be analysed in terms of expressed emotions. The interviews
were designed to provoke one positive and one negative emotion, yet not directly oriented to-
wards one of the three negatively oriented emotions. This structure was motivated by allowing
the participants to talk freely about a subject they related to and felt comfortable to discuss.
During the self-report after each interview, several participants raised confusion about how to
interpret and rate surprise. This emotion showed most inconsistency throughout all research
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questions and was not aimed to be induced through the interviews. By reducing this study
to only focus on one positive and one negative emotion, both for interview design and in data
analysis, a more comprehensive analyse of only these emotions could be conducted to yield a
narrower, yet deeper analysis of two focus emotions.

Regarding the interviews, its setting cannot be perceived as a clear representation of real
conversational speech, due to its reflective nature. The first research question where vocal
markers based on previous research on Swedish vocal markers are based on based on pre-
defined sentences, repeated by four actors, contrasting our analysed dataset. The spontaneous
speech and large variety of interview questions combined with dataset size may indicate some
limitations for the result. During the data analysis it was found that pitch and HNR are
significantly diverged for male and females, see Appendix Table Ell, pitch (Hz) differed roughly
100 Hz, HNR mean for females was =~ 12 while male ~ 1. This has without doubt impacted the
results for all analyses conducted on the full dataset, by the reason that these features even out
by the other gender and may create a normalised average even if it would be distinct if analysed
separately. Additionally, it was nine male and six female participants, probably resulting in
higher mean pitch and HNR values than if it would be even gender groups. It would be to
advantage to analyse them separately or at least have a more equal diverged gender distribution.
During the preprocessing of the recorded audio, loudness was normalised to ensure consistent
volume levels across different recordings. This step was made to prevent significant volume
differences between interviews that could have impact the analysis. However, at a later stage
in this study it was realized that this normalization very likely has unintentionally affected
the vocal feature extraction for intensity/loudness, which are both relevant vocal markers for
emotion recognition and are a key descriptor for certain emotion expressions, as explained in

Theoretical Framework. Since intensity have showed weaker correlations in the analysis
of this study, the preprocessing presumably has led to weakening the variability of this vocal
marker and therefore impacted the results. Due to time constraints, it was not possible to
repeat the full analysis with unprocessed recordings. This is a methodological limitation that
should be addressed in future research.

Comparing the results with the prior study on Swedish vocal markers indicate some simi-
larities and patterns providing valuable information to this study, even if several correlations
and patterns remain weak. Mainly focusing on this study as reference may create bias, by
the reason that there is vastly limited prior research on Swedish in this field. Additionally,
this study employed a larger number of vocal features than extracted for these results. The
three frequency formants were included in both categorisation functions yet excluded in the
overall data analysis. Beyond these, the Swedish study included 14 additional features, some
of these were not possible to extract with Praat Parselmouth and therefore excluded. Voiced-
and unvoiced length were not relevant for this study since the recordings were edited, including
deleting some silent moments. Not including the full set of features is a clear limitation for
the results. While the selected vocal markings chosen for this study gave some insight into
addressing RQ1, expanding the set of features could have helped address RQ1 more compre-
hensively. The interviews did not have a clear timeframe, resulting in varying length of the
recordings even after editing. This could have been stricter and more planned to maintain
consistency across all recordings. The initial idea was to analyse emotions in a clip in its en-
tirety and find correlations, including average vocal markers and Hume probabilities, which due
to differentials in expressions during an interview most likely contributed to even-out values.
Time-segmenting proved to have a notable strength to execute the analysis on a segment level
to capture emotional fluctuations in a more dynamic way. Output from Hume is pre-segmented
with frequency variation of 1-4 seconds, single clip dependent. Vocal features were segmented
into 2.5 second timeframes used for all clips in the general data analysis, leading to divergencies
in segment length. Therefore, we tested how changing the segmented time with 1 second for
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selected individual clips, yielding in both higher and lower results, depending on the clip. For
more accurate results, it should have been adjusted separately for each clip before segmented
analysis to match the time frames extracted from Hume. The methodological approach for
the RQ1 was partially fulfilled by identifying some vocal fluctuations in emotions, while also
revealing challenges in both segment-level and average values. Further insights could have
been provided with utilizing the rule-based functionality for emotion grouping segment wise as
well, to find if grouped features could provide higher correlation results for Hume labelling and
acoustic markers. Hume Al was one of the models used and provided some advantages such as
avoiding manual pre-training, although the Hume AI emotion scores had to be normalized and
the emotions were filtered to use only the specific five emotions necessary for the comparisons
in this research, which may have had some limitations on the model’s capacity. Along with
working well for the research’s purpose, the model has some downsides. For example, there is
limited publicly available information about functions of the model, making it difficult to fully
assess possible limitations and biases. Despite these limitations, Hume Al contributed with
valuable insights in answering RQ1.

Comparing our interview-based result with a larger and more controlled dataset with acted
emotions could possibly have validated some observed patterns or strengthened the opposite
whereas acted speech is expressed explicitly different from speech in real-world similar contexts.
This is also relevant for the second research question extending to text-based emotion recogni-
tion with NLP Cloud that analysed the transcript from the same recordings as RQ1. However,
collecting our own data was beneficial for the third research question where the Al-models
output was compared to self-assessed emotion scores. Utilizing NLP Cloud have limitations.
For the initial implementation for RQ2 and RQ3, the sentiment analysis API by NLP Cloud
was tested. However, this method resulted in a broader range of emotions being returned than
those analysed in this study. To address this limitation and maintain consistency across modal-
ities, the approach for the analysis utilized NLP Cloud’s text generation endpoint, applying the
fine-tuned Llama 3 model. This allowed control of which emotion categories were extracted by
a zero-shot prompt. This approach allowed processing without fine-tuning; however, no testing
of the prompt was conducted prior to the analysis to discover potential output differences.
Therefore, the accuracy and consistency of the NLP model’s output may have been affected by
the formulation of the prompt. It would have been beneficial to evaluate prompt variations and
if one transcription could have varying results if analysed more than once, to verify stability of
the emotion classifications and strengthen the reliability of the results.

The self-reported emotions introduced a valuable reference point for this research. Some
agreement was found between the Al models and self-reported emotions, but some of the self-
assessed scores may also have been slightly exaggerated. The emotional memories and personal
interpretations of emotions by participants can have influenced the self-assessed emotion scores.
While the self-reported emotion scores have potential limitations and contributed to some
variability in the analyses, they helped valuably address RQ3. The complexity of emotion
detection across different modalities is highlighted by the AI models being able to capture
some emotions in a quite robust way while struggling more with others. In this context, it
could have been beneficial to include a larger number of emotions that are more relevant to
interview circumstances. However, most research include around five to six emotions, including
the selected for this study.

The multi-method approach combining speech- and text-based emotion recognition with
self-reported emotion scores of the participants from the interviews contributed to insights into
emotional expression in Swedish speech, despite several limitations. A narrower approach could
have been constructive in terms of deeper analysis. It could also have been useful to study a
larger dataset and compare speech from conversational interviews, actual real conversations and
acted datasets to gain an understanding of how much acted datasets can impact speech recog-

70



nition overall. While the triangulation of speech, text and self-assessment scores contributed
to the strength and credibility of the findings, size of dataset, model transparency and other
limitations such as variabilities and inconsistency in having spontaneous interviews may have
impacted the effectiveness of the findings. Although highlighting some areas for improvement
for future studies, the methods chosen for this research overall contributed to answering the
research questions in a comprehensive manner.
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Conclusion

6.1 Summary of Key Findings and Answering Research
Questions

This thesis explored Al-based emotion recognition in Swedish, comparing speech-based and
text-based analysis as well as self-assessed emotion scores. The research addressed three re-
search questions, the first aimed to investigate how speech-based Al emotion recognition (Hume
AI) aligns with previous research on vocal markers in Swedish speech. The results showed
some alignments exist between acoustic vocal features and Hume AI outputs, especially for
certain emotions where sadness had most prominent correlations with prior research. How-
ever, many correlations were weak or moderate and the results showed some limitations, for
example. the nature of spontaneous speech involved in interviews presented challenges for
some of the emotions, while other emotions proved to be more relevant indicators of emotional
states. Segment-level analysis contributed with valuable insights by illustrating fluctuations in
emotional expression within recordings, implying that analysing speech over time in smaller
segments may capture emotions more effectively than using average values.

For the second research question this study explored differences, similarities and correlations
between speech-based emotion recognition through Hume AI and text-based emotion recogni-
tion through NLP Cloud. For some emotions more than others, some agreements were found
between the models. Joy and anger showed better alignment whereas fear and surprise did
not align as much. The overall cause for this most likely being the complex nature of some
emotions where the vocal cues may not be as pronounced.

For the third and last research question, the comparisons between the models Hume Al
and NLP Cloud in combination with self-assessed emotion scores from the interviews were
investigated. These results showed there were some alignments between the models and self-
assessed scores, though these alignments were stronger with NLP Cloud than with Hume Al
This gave insight into the fact that although some alignments were stronger with NLP Cloud
than others, a multimodal approach that integrates several sources results in better detection
of emotions, where only relying on either a speech-based model or a text-based model would
not give as much insight in the results. Overall, the findings in this research provided answers
to all research questions, contributing to a deeper understanding of emotion recognition in the
Swedish language and highlighting that the different modalities capture different aspects of
emotional expressions.

6.2 Contribution to the Field

This thesis contributes to the vocal and linguistic aspect of the growing fields affective com-
puting and natural language processing (NLP). This study utilized a multimodal approach,
using both text and audio. The results of this suggested that using more than one modality
improves the accuracy when classifying emotions. While there is a lot of existing research focus-
ing on vocal emotion recognition in affective computing and NLP, there was a noticeable gap
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for research specifically in the Swedish language. Much of the existing research also used acted
datasets, which was not used in this study. Instead, this study consisted of semi-structured
interviews with a set of questions for the interviewees to choose from. With the spontaneous
nature of the datasets from speech recorded from interviews, this offers valuable insight into
how emotions can be recognized in a setting more similar to real life. This can also contribute
to the development of more emotionally aware Al models and systems through the insights of
the more subtle cues for different emotions in these settings. Possible areas where this can be
applied is in human-computer interactions, virtual assistance, and mental health monitoring or
similar.

6.3 Limitations of the Study

There were several limitations of significance throughout this thesis. The limited size of the
dataset and the chosen emotions, as the acoustic features, may have impacted the results. A
bigger dataset with more emotions and acoustic features could have given important insight
and clearer results if included. Another important limitation to mention is the spontaneous
nature of the speech gathered from the interviews. Using an acted dataset may have resulted in
emotions being more accurately and stronger identified, whereas the interview setting may have
led to some emotions being left undetected as they may have been expressed too subtly. This
may be due to conversational speech being more subtle than acted speech, reducing levels of
clear emotions and vocal markers. Worth noting is also that the Hume Al emotion scores used
for comparisons, should not be considered ground truth, but more as a something to compare
against. This study also used self-reported emotion scores as a comparison, which may have
given a large variety across the dataset due to the participants own self-perception.

6.4 Future Research

There are several ways to build on this study for future research. Key areas for further advance-
ment are a bigger dataset, a more diverse real-world settings, and a bigger set of emotions and
vocal features. Using more vocal features and fine-tuning models for Swedish would possibly im-
prove accuracy. To explore how the results differ between languages, Swedish recordings could
be compared to an English dataset. Furthermore, multimodal emotion recognition pipelines
combining speech, text, and facial expressions could offer more comprehensive emotion detec-
tion. Real-time emotion recognition in real world scenarios and fields as education, healthcare,
or mental health monitoring is areas that could benefit from this kind of technology but requires
clear ethical considerations.

6.5 Final Conclusion

This thesis investigated AI based emotion recognition in textual and vocal content in the
Swedish language. The results showed some similarities with existing research on vocal markers
in Swedish language and strongly demonstrated the importance of using more than one modality
to improve the accuracy of the emotion recognition, especially for more complex emotions.
The findings gathered from the research in this thesis help contribute to the growing fields of
affective computing and natural language processing, highlighting opportunities and challenges
of emotion recognition technologies in multilingual and spontaneous speech contexts. With
technology becoming an increasingly larger part of society, understanding human emotions is
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a step towards Al becoming more effective and empathetic, which can help mold the future of
education, health care and human-computer interactions.
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Appendix

(a) Summary statistics for female speakers (b) Summary statistics for male speakers
Feature Mean Std Feature Mean Std
mean_ pitch_hz 215.168  12.744 mean_ pitch hz 112.665  13.657
mean_ pitch st 6.218 1.012 mean_ pitch st -5.072 2.067
mean__intensity db 62.419 3.022 mean__intensity db 63.816 2.550
mean_hnr db 12.068 1.642 mean__hnr db 1.033 1.262
jitter_local 0.022 0.003 jitter_local 0.027 0.003
shimmer local 0.110 0.022 shimmer local 0.138 0.017
formant F1 hz 694.094 353.464 formant F1 hz 688.201 311.007
formant F2 hz 1810.434 647.845 formant F2 hz 1916.512 457.306
formant F3 hz 3045.689 464.207 formant F3 hz 2990.914 375.011

Table 7.1: Vocal feature means and standard deviations by gender

80



Table 7.2: Interview prompts for positive and negative scenarios

Negative:

Think about a situation when something did not go as planned. What was it?
What feelings did you experience?

Is it something about society that makes you upset? What? Can you elaborate?

Is it something in your everyday life that frustrates you? What? Can you
elaborate?

Think of a time when you lost your patience at something or someone. What
was it triggered by?

Can you describe a time where someone betrayed you or your trust? How did
you manage that situation?

Have you ever felt someone took credit for something you did or disregarded
your efforts? How did it feel?

Can you remember a time when you felt unfairly treated by someone? What
happened and how did you react?

Positive:

Describe a situation when something unexpected raised immense happiness in
you. How did you feel in that moment?

Think about a moment when you were very proud of yourself. What did you
do and how did you feel?

Think about a moment when you had an amazing experience with close friends
or family. What happened and how did you feel at that time?

Can you remember a time when you felt completely carefree and happy? What
did you do and who were you with?

Think of a moment when you got a compliment or acknowledgement that made
you feel really good about yourself. How did it affect your mood?

BENCHMARKS = {

"anger": [("hnr","below"), ("jit","below"), ("loud","above")],
"joy": [("pitch","above"), ("hnr","above"), ("loud","above")],
"sadness": [("pitch","below"), ("hnr","below"), ("loud","below")],
D EeameD ¢ [("hnr","above"), ("jit","below")],
"surprise": [("jit","above"), ("shim","above")],

}

FEATURE_WEIGHTS = {
"pitch": 1.3, "loud": 0.5, "hnr": 1.0,
"jit": 1.0, "shim": 1.0,
"1 1.0, "f2": 1.0, "f3": 1.0,
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SD_KEY = {

llpitchll . ||Sdll , Illoudll : n Sd_l” , llhnrll : n Sd_h" s
lljit n . ”Sd_j n s "Shim" . n Sd_S n s
llflll:llsd_flll, Ilf2||:llsd_f2ll’ "f3|I:'|Sd_f3",

def categorise_emotion_all_scores(
vi: dict,
K_NEAR: float = 1.25,
k_extreme: float = 1.6,
K_EXTREME_PER_EMO: Dict[str, float] = None,
use_bm_gate: bool = False,
) -> List[Tuplel[str, float]]:
# Extract features

pitch = vf.get("mean_pitch_st")
loud = vf.get("mean_intensity_db")
hnr = vf.get("mean_hnr_db")
jitter = vf.get("jitter_local")

shimmer = vf.get("shimmer_local")
formants = vf.get("formants_hz", {})
f1, f2, £f3 = formants.get("F1"), formants.get("F2"), formants.get("F3
")
# Reference means & SDs (Ekberg, 2018)
M= {
"anger": {
"pitch":5.00, "sd":5.39, "loud":7.16, "sd_1":0.66,
"hnr":2.36, "sd_h":0.52, "jit":-0.13, "sd_j":0.38,
"shim":-1.03,"sd_s":0.21, "f1":0.78, "sd_f1":0.34,
"£f2":1.20, "sd_f2":0.35, "£3":0.80, "sd_£3":0.34
},
"fear": { .. },
"joy": { . 3},
"sadness": { .. },
"surprise": { .. }
}

K_EXTREME_PER_EMO or {}
k_extreme
use_bm_gate

k_ext_per_emo
default_k
bm_gate

def near(val, mean, sd, k=K_NEAR):
return val is not None and abs(val-mean) <= kx*sd

def extreme(val, mean, sd, dir, emo):
if val is None: return False
k = k_ext_per_emo.get (emo, default_k)
if dir=="above":
return val > mean + k*sd
else:
return val < mean - kx*sd
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def feature_val (key):

return {
"pitch": pitch, "loud": loud, "hnr": hnr,
"jit": jitter, "shim": shimmer,
"fi": f1 and f1/1000, "f2": f2 and f2/1000, "f3": f3 and £f3
/1000
}[key]
cue_counts = {emo: 0.0 for emo in M}
for emo, stats in M.items():
hits = 0

for feat_key, dir in BENCHMARKS [emo]:
v = feature_val(feat_key)
if extreme(v, stats[feat_key], stats[SD_KEY[feat_keyl], dir,
emo) :
hits += 1

# Apply benchmark gate logic

if bm_gate and emo=="anger" and hits>=2:
cue_counts[emo] += hits

elif bm_gate and emo in ("sadness","joy") and hits>=1:
cue_counts[emo] += hits

else:
cue_counts[emo] += hits

# Add ""near hits feature weighted

for val, key in [
(pitch,"pitch"), (loud,"loud"), (hnr,"hnr"),
(jitter,"jit"), (shimmer,"shim"),
(f1 and £1/1000,"f1"), (£f2 and £2/1000,"£2"), (£3 and £3

/1000,"£3")
1:
if near(val, stats([key], stats[SD_KEY[keyl]l):
cue_counts [emo] += FEATURE_WEIGHTS [key]
prob = categorize_emotion_table (vf)
combined = {e: cue_counts[e] + 0.3*prob.get(e,0.0) for e in

cue_counts}
return sorted(combined.items (), key=lambda kv: kv[1], reverse=True)

Listing 7.1: Emotion categorization code

Positive Recordings Negative Recordings
Emotion Pearson’sr p-value Sign. Emotion Pearson’sr p-value Sign.
Anger —0.320  0.2451 No Anger —0.157  0.5767 No
Joy —0.004 0.9876 No Joy 0.097 0.7319 No
Sadness 0.265 0.3391 No Sadness 0.222 0.4268 No
Fear —0.022 0.9371 No Fear 0.216 0.4398 No
Surprise —0.054 0.8476 No Surprise —0.212 0.6081 No

Table 7.3: Pearson’s r, p-values, and significance for positive vs. negative recordings.
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Positive recordings

Feature ANOVA P-value Sign.

Pitch
Intensity
HNR
Jitter
Shimmer

0.7595
0.8627
0.6149
0.9564
0.7828

No
No
No
No
No

(a) ANOVA: Positive recordings.

Negative recordings

Feature ANOVA P-value Sign.

Pitch 0.5393
Intensity 0.1307
HNR 0.5142
Jitter 0.9066
Shimmer 0.6863

No
No
No
No
No

(b) ANOVA: Negative recordings.

Table 7.4: ANOVA for vocal features across emotions.

Feature Emotion Pearson r p-value Significant
mean__ pitch_hz anger 0.053 0.1094 No
mean_ pitch_hz joy 0.031 0.3503 No
mean_ pitch hz sadness -0.226  0.0000 Yes
mean_ pitch_hz fear 0.087 0.0091 Yes
mean_pitch hz surprise 0.060 0.0719 No
mean__intensity db anger 0.038 0.2548 No
mean__intensity db joy 0.156  0.0000 Yes
mean__intensity db sadness -0.164 0.0000 Yes
mean__intensity _db fear -0.136  0.0000 Yes
mean__intensity db surprise -0.094 0.0047 Yes
mean hnr db anger 0.064 0.0557 No
mean__hnr_db joy 0.061 0.0650 No
mean_hnr db sadness -0.271  0.0000 Yes
mean_hnr db fear 0.079 0.0173 Yes
mean hnr db surprise 0.030 0.3677 No
jitter_local anger 0.033 0.3237 No
jitter_local joy -0.033 0.3219 No
jitter_local sadness 0.040 0.2362 No
jitter_local fear 0.000 0.9885 No
jitter_local surprise -0.042 0.2034 No
shimmer local anger 0.001 0.9794 No
shimmer_local joy 0.057 0.0896 No
shimmer local sadness -0.073  0.0283 Yes
shimmer local fear -0.022 0.5001 No
shimmer_ local surprise -0.018 0.5823 No

Table 7.5: Pearson correlations for all data in time-to-time analysis.
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Feature Emotion t-statistic p-value Significant
mean_ pitch hz anger 1.992 0.0467 Yes
mean_ pitch hz joy 1.438 0.1508 No
mean_ pitch_hz sadness -6.515 0.0000 Yes
mean_ pitch hz fear 3.445  0.0006 Yes
mean_ pitch hz surprise 0.770 0.4417 No
mean__intensity _db anger 1.209 0.2271 No
mean__intensity db joy 4.000 0.0001 Yes
mean__intensity db sadness —4.745  0.0000 Yes
mean_intensity db fear -2.469 0.0138 Yes
mean__intensity _db surprise -2.324 0.0204 Yes
mean hnr db anger 3.027 0.0025 Yes
mean__hnr_db joy 2.619  0.0090 Yes
mean hnr db sadness -8.105 0.0000 Yes
mean_hnr db fear 3.713 0.0002 Yes
mean_hnr db surprise 1.263 0.2070 No
jitter local anger 0.867 0.3863 No
jitter_local joy -0.956 0.3396 No
jitter_local sadness 1.092 0.2753 No
jitter_local fear 0.388 0.6980 No
jitter_local surprise -1.117  0.2642 No
shimmer local anger 1.052 0.2933 No
shimmer_ local joy 0.983 0.3256 No
shimmer local sadness -2.425 0.0155 Yes
shimmer local fear 1.125 0.2609 No
shimmer local surprise -0.621  0.5350 No

Table 7.6: T-statistics for all data in Time-to-Time analysis.

T(s) Clip Feat Emo p Sign
1.0 id 006 _pos mean_pitch hz joy 0.188 0.1965 No
1.0 id_006_pos mean_intensity db joy 0.351 0.0134 Yes
1.0 id 006 _pos mean hnr db joy 0.043 0.7674 No
1.0 id_006_pos jitter local joy 0.033 0.8244 No
1.0 id_006_pos shimmer local joy 0.002 0.9888 No
2.0 id_006_pos mean_pitch_hz joy 0.078 0.6103 No
2.0 id_006_pos mean_intensity db joy 0.329 0.0272 Yes
2.0 id 006 _pos mean hnr db joy -0.014 0.9248 No
2.0 id_006_pos jitter local joy 0.063 0.6803 No
2.0 id 006 _pos shimmer local joy 0.115 0.4528 No

Table 7.7: Clip 006 pos. Pearson correlation for Joy, 1 and 2s segment
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T(s) Clip Feat Emo t p Sign

1.0 id_006_pos mean_ pitch hz joy 0.331 0.7419 No
1.0 id _006_pos mean_ intensity db joy 2.718 0.0092 Yes

1.0 id_006_pos mean_hnr db joy 0.958 0.3427 No
1.0 id_006_pos jitter local joy 0.062 0.9506 No
1.0 id_006_pos shimmer_ local joy 0.178 0.8598 No

2.0 id_006_pos mean_pitch hz joy  -0.237 0.8136 No
2.0 id_006_pos mean_intensity db joy 1.162 0.2517 No

2.0 id_006_pos mean_ hnr db joy -0.562 0.5768 No
2.0 id_006_pos jitter local joy 1.210 0.2329 No
2.0 id_006_pos shimmer_ local joy 1.918 0.0617 No

Table 7.8: Clip 006 pos. T-statistics for Joy, 1 and 2s segment.

T(s) Clip Feat Emo r p Sign

1.25 id 012 _neg mean_pitch hz anger -0.097 0.5496 No
1.25 id_012_neg mean_intensity db anger 0.257 0.1091 No

1.25 id 012 _neg mean hnr db anger -0.114 0.4846 No
1.25 id_012 neg jitter_ local anger 0.173 0.2862 No
1.25 id_012_neg shimmer local anger 0.284 0.0762 No

2.25 id_ 012 neg mean_pitch hz anger —0.217 0.1839 No
2.25 id_012 neg mean_intensity db anger 0.094 0.5707 No

2.25 id 012 neg mean hnr db anger -0.112 0.4955 No
2.25 id_012 neg jitter_ local anger 0.221 0.1761 No
2.25 id_012 neg shimmer local anger  0.180 0.2717 No

Table 7.9: Clip 012 neg. Pearson correlations for Anger, 1.25 and 2.25s segments.

T(s) Clip Feat Emo t p Sign

1.25 id_012_neg mean_pitch hz anger -0.353 0.7259 No
1.25 id_012_neg mean_intensity db anger 2.255 0.0300 Yes

1.25 id_012_neg mean_hnr_ db anger 0.880 0.3844 No
1.25 id_012 neg jitter_ local anger 0.223 0.8249 No
1.25 id_012_neg shimmer local anger 1.839 0.0737 No

2.25 id_012 neg mean_pitch_hz anger —1.498 0.1427 No
2.25 id_ 012 neg mean intensity db anger 0.705 0.4852 No

2.25 id_012 neg mean_ hnr db anger 0.656 0.5156 No
2.25 id 012 neg jitter local anger 1.087 0.2841 No
2.25 id_012 neg shimmer local anger 1.055 0.2982 No

Table 7.10: Clip 012 neg. T-statistics for Anger, 1.25 and 2.25s segments.
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T(s) Clip Feature Emotion Pearson r p-value Significant
1.0  id_006_neg mean_pitch_hz sadness -0.069 0.7073 No
1.0 id 006 _neg mean intensity db sadness 0.210 0.2495 No
1.0 id_006_neg mean_hnr db sadness 0.365 0.0398 Yes
1.0 id_006_neg jitter local sadness -0.312 0.0816 No
1.0 id_006_neg shimmer local sadness -0.326  0.0683 No
2.0 id_006_neg mean pitch_ hz sadness -0.333 0.0722 No
2.0 id_006_neg mean_intensity db sadness -0.213 0.2585 No
2.0 id 006 _neg mean hnr db sadness -0.265 0.1567 No
2.0 id_006_neg jitter local sadness 0.092 0.6285 No
2.0 id_006_neg shimmer local sadness —0.050 0.7943 No

Table 7.11: Clip 006 neg. Pearson correlations for Sadness, 1.0 and 2.0 s segment.

T(s) Clip Feature Emotion t-statistic p-value Significant
1.0 id_006_neg mean_pitch hz sadness 0.556 0.5826 No
1.0 id_006_neg mean_intensity db sadness 0.818 0.4196 No
1.0 id_006_neg mean_ hnr db sadness 2.565 0.0156 Yes
1.0 id_006_neg jitter local sadness -1.891 0.0683 No
1.0 id _006_neg shimmer local sadness -1.663 0.1068 No
2.0 id_006_neg mean_pitch hz sadness —2.203 0.0360 Yes
2.0 id_006_neg mean_intensity db sadness -1.307 0.2018 No
2.0 id_006_neg mean_ hnr db sadness -1.289 0.2079 No
2.0 id_006_neg jitter local sadness 1.009 0.3215 No
2.0 id _006_neg shimmer local sadness 0.157 0.8766 No

Table 7.12: Clip 006 neg. T-statistics for Sadness, 1.0 and 2.0s segment.
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